【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),過(guò)點(diǎn)D作⊙O的切線(xiàn)BC于點(diǎn)M,切點(diǎn)為N,則DM的長(zhǎng)為(
A.
B.
C.
D.2

【答案】A
【解析】解:連接OE,OF,ON,OG, 在矩形ABCD中,
∵∠A=∠B=90°,CD=AB=4,
∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn),
∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
∴四邊形AFOE,F(xiàn)BGO是正方形,
∴AF=BF=AE=BG=2,
∴DE=3,
∵DM是⊙O的切線(xiàn),
∴DN=DE=3,MN=MG,
∴CM=5﹣2﹣MN=3﹣MN,
在Rt△DMC中,DM2=CD2+CM2 ,
∴(3+NM)2=(3﹣NM)2+42 ,
∴NM=
∴DM=3+ = ,
故選A.

連接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點(diǎn)得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四邊形AFOE,F(xiàn)BGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】考試前,同學(xué)們總會(huì)采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對(duì)該校九年級(jí)的部分同學(xué)做了一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),學(xué)校將減壓方式分為五類(lèi),同學(xué)們可根據(jù)自己的情況必選且只選其中一類(lèi).學(xué)校收集整理數(shù)據(jù)后,繪制了圖1和圖2兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖中信息解答下列問(wèn)題:
(1)這次抽樣調(diào)查中,一共抽查了多少名學(xué)生?
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“享受美食”所對(duì)應(yīng)扇形的圓心角的度數(shù);
(4)根據(jù)調(diào)查結(jié)果,估計(jì)該校九年級(jí)500名學(xué)生中采用“聽(tīng)音樂(lè)”來(lái)減壓方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是(
A.b2>4ac
B.ax2+bx+c≥﹣6
C.若點(diǎn)(﹣2,m),(﹣5,n)在拋物線(xiàn)上,則m>n
D.關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖,紙片□ABCD中,AD=5,S□ABCD=15,過(guò)點(diǎn)AAEBC,垂足為E,沿AE剪下△ABE,將它平移至△DCE'的位置,拼成四邊形AEE'D,則四邊形AEE'D的形狀為( )

A.平行四邊形 B.菱形 C.矩形 D.正方形

(2)如圖,在(1)中的四邊形紙片AEE'D中,在EE'上取一點(diǎn)F,使EF=4,剪下△AEF,剪下△AEF,將它平移至△DE'F'的位置,拼成四邊形AFF'D

①求證:四邊形AFF'D是菱形;

②求四邊形AFF'D的兩條對(duì)角線(xiàn)的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀理解)

點(diǎn)A、B、C為數(shù)軸上三點(diǎn),如果點(diǎn)CA、B之間且到A的距離是點(diǎn)CB的距離3倍,那么我們就稱(chēng)點(diǎn)C{ A,B }的奇點(diǎn).

例如,如圖1,點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B表示的數(shù)為1.表示0的點(diǎn)C到點(diǎn)A的距離是3,到點(diǎn)B的距離是1,那么點(diǎn)C{ A,B }的奇點(diǎn);又如,表示﹣2的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是3,那么點(diǎn)D就不是{A,B }的奇點(diǎn),但點(diǎn)D{B,A}的奇點(diǎn).

(知識(shí)運(yùn)用)

如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣3,點(diǎn)N所表示的數(shù)為5.

(1)數(shù)   所表示的點(diǎn)是{ M,N}的奇點(diǎn);數(shù)   所表示的點(diǎn)是{N,M}的奇點(diǎn);

(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣50,點(diǎn)B所表示的數(shù)為30.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)B出發(fā)向左運(yùn)動(dòng),到達(dá)點(diǎn)A停止.P點(diǎn)運(yùn)動(dòng)到數(shù)軸上的什么位置時(shí),P、AB中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察圖形:填空

(1)表示:1+3=4=22

(2)表示:1+3+5=9=32;

(3)表示:1+3+5+7=16=42

以此類(lèi)推,(4)表示:   

解決問(wèn)題:求1+3+5+7+……+2019的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為acm,E、F分別是BC、CD的中點(diǎn),連接BF、DE,則圖中陰影部分的面積是cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若把邊長(zhǎng)為1的正方形ABCD的四個(gè)角(陰影部分)剪掉,得一四邊形A1B1C1D1 . 試問(wèn)怎樣剪,才能使剩下的圖形仍為正方形,且剩下圖形的面積為原來(lái)正方形面積的 ,請(qǐng)說(shuō)明理由.(寫(xiě)出證明及計(jì)算過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過(guò)A、B、C三點(diǎn)作拋物線(xiàn).

(1)求點(diǎn)C的坐標(biāo)及拋物線(xiàn)的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線(xiàn)上一點(diǎn),∠BCE的平分線(xiàn)CD交⊙O′于點(diǎn)D,求點(diǎn)D的坐標(biāo);并直接寫(xiě)出直線(xiàn)BC、直線(xiàn)BD的解析式;
(3)在(2)的條件下,拋物線(xiàn)上是否存在點(diǎn)P,使得∠PDB=∠CBD,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案