【題目】某商場(chǎng)甲、乙、丙三名業(yè)務(wù)員2018年前5個(gè)月的銷售額(單位:萬元)如下表:

月份

銷售額

人員

1

2

3

4

5

6

9

10

8

8

5

7

8

9

9

5

9

10

5

11

1)根據(jù)上表中的數(shù)據(jù),將下表補(bǔ)充完整:

統(tǒng)計(jì)值

數(shù)值

人員

平均數(shù)(萬元)

眾數(shù)(萬元)

中位數(shù)(萬元)

方差

8

8

1.76

7.6

8

2.24

8

5

2)甲、乙、丙三名業(yè)務(wù)員都說自己的銷售業(yè)績(jī)好,你贊同誰的說法?請(qǐng)說明理由.

【答案】18.2;9;9;6.4;(2)贊同甲的說法.理由見解析.

【解析】

1)利用平均數(shù)、眾數(shù)、中位數(shù)的定義和方差的計(jì)算公式求解;

2)利用甲的平均數(shù)大得到總營(yíng)業(yè)額高,方差小,營(yíng)業(yè)額穩(wěn)定進(jìn)行判斷.

1)甲的平均數(shù);

乙的眾數(shù)為9

丙的中位數(shù)為9,

丙的方差

故答案為8.2;9;96.4;

2)贊同甲的說法.理由是:甲的平均數(shù)高,總營(yíng)業(yè)額比乙、丙都高,每月的營(yíng)業(yè)額比較穩(wěn)定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD BC上,頂點(diǎn)FH在菱形ABCD的對(duì)角線BD上,若AB=6,∠A=120°,且DE=2,則FH=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某農(nóng)戶準(zhǔn)備建一個(gè)長(zhǎng)方形養(yǎng)雞場(chǎng),養(yǎng)雞場(chǎng)的一邊靠墻,墻對(duì)面有一個(gè)2m寬的門,另三邊用竹籬笆圍成,籬笆總長(zhǎng)33m.圍成長(zhǎng)方形的養(yǎng)雞場(chǎng)除門之外四周不能有空隙.

1)若墻長(zhǎng)為18m,要圍成養(yǎng)雞場(chǎng)的面積為150m2,則養(yǎng)雞場(chǎng)的長(zhǎng)和寬各為多少?

2)圍成養(yǎng)雞場(chǎng)的面積能否達(dá)到200m2?請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小夏同學(xué)從家到學(xué)校有,兩條不同的公交線路.為了解早高峰期間這三條線路上的公交車從甲地到乙地的用時(shí)情況,在每條線路上隨機(jī)選取了500個(gè)班次的公交車,收集了這些班次的公交車用時(shí)(單位:分鐘)的數(shù)據(jù),統(tǒng)計(jì)如下:

公交車用時(shí)

頻數(shù)

公交車路線

總計(jì)

59

151

166

124

500

43

57

149

251

500

據(jù)此估計(jì),早高峰期間,乘坐線路用時(shí)不超過35分鐘的概率為__________,若要在40分鐘之內(nèi)到達(dá)學(xué)校,應(yīng)盡量選擇乘坐__________(填)線路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)北京市統(tǒng)計(jì)局發(fā)布的統(tǒng)計(jì)數(shù)據(jù)顯示,北京市近五年國(guó)民生產(chǎn)總值數(shù)據(jù)如圖1所示,2017年國(guó)民生產(chǎn)總值中第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)所占比例如圖2所示,根據(jù)以上信息,下列判斷錯(cuò)誤的是(

A.2013年至2017年北京市國(guó)民生產(chǎn)總值逐年增加

B.2017年第二產(chǎn)業(yè)生產(chǎn)總值為5 320億元

C.2017年比2016年的國(guó)民生產(chǎn)總值增加了10%

D.若從2018年開始,每一年的國(guó)民生產(chǎn)總值比前一年均增長(zhǎng)10%,到2019年的國(guó)民生產(chǎn)總值將達(dá)到33 880億元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy,對(duì)于點(diǎn)Pxpyp)和圖形G,設(shè)QxQ,yQ)是圖形G上任意一點(diǎn),|xpxQ|的最小值叫點(diǎn)P和圖形G的“水平距離”,|ypyQ|的最小值叫點(diǎn)P和圖形G的“豎直距離”,點(diǎn)P和圖形G的“水平距離”與“豎直距離”的最大值叫做點(diǎn)P和圖形G的“絕對(duì)距離”

例如:點(diǎn)P(﹣23)和半徑為1O,因?yàn)?/span>O上任一點(diǎn)QxQ,yQ)滿足﹣1xQ1,﹣1yQ1,點(diǎn)PO的“水平距離”為|2xQ|的最小值,即|2﹣(﹣1|=1,點(diǎn)PO的“豎直距離”為|3yQ|的最小值即|31|=2,因?yàn)?/span>21,所以點(diǎn)PO的“絕對(duì)距離”為2

已知O半徑為1,A2,),B4,1),C4,3

1直接寫出點(diǎn)AO的“絕對(duì)距離”

已知D是△ABC邊上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)DO的“絕對(duì)距離”為2時(shí),寫出一個(gè)滿足條件的點(diǎn)D的坐標(biāo);

2)已知E是△ABC邊一個(gè)動(dòng)點(diǎn),直接寫出點(diǎn)EO的“絕對(duì)距離”的最小值及相應(yīng)的點(diǎn)E的坐標(biāo)

3)已知PO上一個(gè)動(dòng)點(diǎn),△ABC沿直線AB平移過程中,直接寫出點(diǎn)P與△ABC的“絕對(duì)距離”的最小值及相應(yīng)的點(diǎn)P和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校準(zhǔn)備開辦“書畫、器樂、戲曲、棋類”四個(gè)興趣班.為了解學(xué)生對(duì)興趣班的選擇情況,隨機(jī)抽取部分學(xué)生調(diào)查.每人單選一項(xiàng),結(jié)果如下(尚未完善)

求本次調(diào)查的學(xué)生人數(shù)和扇形圖中“器樂”對(duì)應(yīng)圓心角的大。

若全校共有名學(xué)生,請(qǐng)估計(jì)選擇“戲曲”的人數(shù).

學(xué)校將從四個(gè)興趣班中任選取兩個(gè)參加全區(qū)青少年才藝展示活動(dòng),求恰好抽到“器樂”和“戲曲”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù),一次函數(shù),若方程的兩根是,

1)求bc的值;

2)當(dāng)x滿足時(shí),比較x的大小并說明理由;

3)設(shè)點(diǎn)M的坐標(biāo)是,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P到點(diǎn)M的距離與到直線的距離之和最小時(shí),請(qǐng)直接寫出點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,拋物線yax2+bx+c過點(diǎn)A(﹣1,0),B3,0),C0,3),點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn),PEy軸,交直線BC于點(diǎn)E連接AP,交直線BC于點(diǎn) D

1)求拋物線的函數(shù)表達(dá)式;

2)當(dāng)AD2PD時(shí),求點(diǎn)P的坐標(biāo);

3)求線段PE的最大值;

4)當(dāng)線段PE最大時(shí),若點(diǎn)F在直線BC上且∠EFP2ACO,直接寫出點(diǎn)F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案