如圖,在平行四邊形ABCD中,AB在x軸上,D點y軸上,,B點坐標為(4,0).點是邊上一點,且.點、分別從同時出發(fā),以1厘米/秒的速度分別沿、向點運動(當點F運動到點B時,點E隨之停止運動),EM、CD的延長線交于點P,F(xiàn)P交AD于點Q.⊙E半徑為,設(shè)運動時間為秒。

小題1:求直線BC的解析式。
小題2:當為何值時,
小題3:在(2)問條件下,⊙E與直線PF是否相切;如果相切,加以證明,并求出切點的坐標。如果不相切,說明理由。
 
小題1:
小題2:∵ PF⊥AD,AD//BC
∴ PF⊥BC 
   ∴
  
 
   
      ∴ 當時,PF⊥AD
小題3:相切,切點坐標為
 略
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

正方形紙片ABCD和BEFG的邊長分別為12和5,按如圖所示的方式剪下2個陰影部分的直角三角形,并擺放成正方形DHFI,則正方形DHFI的邊長為   ▲   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形中,,,,則( )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD中,AB∥CD,∠DAB=90°,F(xiàn)是BC的中點,
連接DF并延長DF交AB于點E,連接AF。

小題1:(1)求證:△CDF≌△BEF;
小題2:(2)若∠E=28°,求∠AFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,四邊形ABCD是一個梯形,AB∥CD,∠ABC=90。,AB="9" cm,BC="8" cm,CD="7" cm,M是AD的中點,過M做AD的垂線交BC于N,則BN的長等于           

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知正方形ABCD,點B與坐標原點O重合,BC、BA分別在x軸和y軸上,對角線BD在射線OM上,點E在y軸上,OA、OE的長分別是2和6,正方形ABCD以每秒2個單位長度的速度沿射線OM(BD始終在射線OM上)方向移動,同時點P從點C以每秒1個單位長度的速度沿折線CD—DA向點A移動,當一點到達終點時,另一點也停止移動,設(shè)移動時間為t秒
小題1:當0≤t≤2時,直接寫出點P的坐標(用t的代數(shù)式表示).
小題2:當四邊形EABO是等腰梯形時,①求t的值;②求證:OA=ED
小題3:是否存在這樣的t值,使EP//x軸,若有,求出點P的坐標;若沒有,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖, AD∥BC,BD平分∠ABC,∠A=120°,∠C=60°,AB=CD=4cm,
求四邊形ABCD的周長

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

右圖是對稱中心為點的正六邊形.如果用一個含角的直角三角板的角,借助點(使角的頂點落在點處),把這個正六邊形的面積等分,那么的所有
可能的值是             

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

□ABCD中,EAB延長線上的一點,若∠1=60°,則∠A的度數(shù)為(   ).
A.120°B.60°C.45°D.30°

查看答案和解析>>

同步練習冊答案