【題目】如圖1,在平面直角坐標系xOy中,A(a,0)、B(0,b)、C(﹣a,0),且+b2﹣4b+4=0
(1)求證:∠ABC=90°;
(2)作∠ABO的平分線交x軸于一點D,求D點的坐標;
(3)如圖2所示,A、B兩點在x軸、y軸上的位置不變,在線段AB上有兩動點M、N,滿足∠MON=45°,下列結論:①BM+AN=MN;②BM2+AN2=MN2,其中有且只有一個結論成立.請你判斷哪一個結論成立,并證明成立的結論.
【答案】(1) 證明見解析;(2)D(,0);(3) ②是對的(基本結論),證明見解析.
【解析】
試題(1)由 可得a=2,b=2,即可得A、B、C的坐標,即可判定∠ABC=90°;(2) 過D作DE⊥AB于E,由于BD是∠ABO的角平分線,根據(jù)角平分線的性質(zhì)知DO=DE,設OD=x,根據(jù)S△AOB的兩種求法列出方程,由此求出OD的長,從而得到D點的坐標.(3)此題要通過構造全等三角形來求解;作OE⊥OM,且使得OE=OM,由于∠MON=45°,那么∠EON=∠MON=45°,即可證得△MON≌△EON,MN=NE;同理可通過證△MON≌△EON,來得到BM=AN,∠OAE=∠OBM=45°,因此在Rt△NAE中,根據(jù)勾股定理即可證得(2)的結論是正確的.
試題解析:
證明:∵
∴a=2,b=2,
∴A(2,0)、B(0,2)、C(-2,0),
∴△AOB和△COD是等腰直角三角形,
∴∠ABC=90°
(2) 過點D作DE⊥AB于E
∵BD平分∠ABO
∴OD=DE
設OD=x
∵S△AOB=×2×2=×2×x+××x,解得
∴D(,0)
(3) ②是對的(基本結論).
過點O作OE⊥OM,并使OE=OM,
在△MOB和△EOA中,
OB=OA,∠MOB=∠AOE,OM=OE,
∴△MOB≌△EOA,
∴BM=AE,∠B=∠OAE,
在△MON和△EON中,
OM=OE,∠MON=∠NOE=45°,ON=ON,
∴△MON≌△EON;
∴MN=NE,
又∵∠NAE=∠NAO+∠OAE=90°,
∴△NAE為直角三角形,
∴NA2+AE2=NE2
∴BM2+AN2=MN2,即結論②正確.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人加工一種零件,甲比乙每小時多加工10個零件,甲加工150個零件所用的時間與乙加工120個零件所用的時間相等.
(1)求甲每小時加工多少個零件?
(2)由于廠家在12小時內(nèi)急需一批這種零件不少于1000件,決定由甲、乙兩人共同完成.乙臨時有事耽擱了一段時間,先讓甲單獨完成一部分零件后兩人合作完成剩下的零件.求乙最多可以耽擱多長時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在⊿ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作于點E.
(1)證明:DE是⊙O的切線;
(2)若,AB=8,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一傘狀圖形,已知∠AOB=120°,點P是∠AOB角平分線上一點,且OP=2,∠MPN=60°,PM與OB交于點F,PN與OA交于點E.
(1)如圖一,當PN與PO重合時,探索PE,PF的數(shù)量關系.
(2)如圖二,將∠MPN在(1)的情形下繞點P逆時針旋轉a度(0<a<60°),繼續(xù)探索PE,PF的數(shù)量關系,并求四邊形OEPF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上A、B兩點對應的數(shù)分別是﹣4、12,線段CE在數(shù)軸上運動,點C在點E的左邊,且CE=8,點F是AE的中點.
(1)如圖1,當線段CE運動到點C、E均在A、B之間時,若CF=1,則AB= ,AC= ,BE= ;
(2)當線段CE運動到點A在C、E之間時,
①設AF長為,用含的代數(shù)式表示BE= (結果需化簡);
②求BE與CF的數(shù)量關系;
(3)當點C運動到數(shù)軸上表示數(shù)﹣14的位置時,動點P從點E出發(fā),以每秒3個單位長度的速度向右運動,抵達B后,立即以原來一半速度返回,同時點Q從A出發(fā),以每秒2個單位長度的速度向終點B運動,設它們運動的時間為t秒(t≤8),求t為何值時,P、Q兩點間的距離為1個單位長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,已知直線 AB 的函數(shù)解析式為 y 2x 8 ,與 x 軸交于點 A ,與 y軸交于點 B 。
(1)求 A 、 B 兩點的坐標;
(2)若點 P m, n為線段 AB 上的一個動點(與 A 、B 不重合),作 PE x 軸于 E , PF y軸于點 F ,連接 EF ,問:
①若PEF 的面積為 S ,求 S 關于 m 的函數(shù)關系式,并求出當 S 3時 P 點的坐標;
②是否存在點 P ,使 EF 的值最?若存在,求出 EF 的最小值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)是( )
(1)若,則
(2)若,則
(3)若,則
(4)若兩個角互補,則這兩個角是鄰補角
(5)有公共頂點且有一條公共邊的兩個角是鄰補角
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會文藝部換屆選舉,經(jīng)初選、復選后,共有甲、乙、丙三人進入最后的競選.最后決定利用投票的方式對三人進行選舉,共發(fā)出1800張選票,得票數(shù)最高者為當選人,且廢票不計入任何一位候選人的得票數(shù)內(nèi),全校設有四個投票箱,目前第一、第二、第三投票箱已開完所有選票,剩下第四投票箱尚未開箱,結果如表所示(單位:票):
投票箱 | 候選人 | 廢票 | 合計 | ||
甲 | 乙 | 丙 | |||
一 | 200 | 211 | 147 | 12 | 570 |
二 | 286 | 85 | 244 | 15 | 630 |
三 | 97 | 41 | 205 | 7 | 350 |
四 | 250 |
下列判斷正確的是( )
A. 甲可能當選 B. 乙可能當選 C. 丙一定當選 D. 甲、乙、丙三人都可能當選
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲,乙兩車都從A地出發(fā),沿相同的道路,以各自的速度勻速駛向B地.甲車先出發(fā),乙車出發(fā)一段時間后追上甲并反超,乙車到達B地后,立即按原路返回,在途中再次與甲車相遇。著兩車之間的路程為s(千米),與甲車行駛的時間t(小時)之間的圖象如圖所示.乙車從A地出發(fā)到返回A地需________小時.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com