精英家教網 > 初中數學 > 題目詳情

【題目】在四邊形ABCD中,ABDC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點CCEDBAB的延長線于點E,連接OE

1)求證:四邊形ABCD是菱形;

2)若∠DAB=60°,且AB=4,求OE的長.

【答案】(1)證明見解析;(2)2.

【解析】

1)根據平行四邊形的判定和菱形的判定證明即可;

2)根據菱形的性質和勾股定理解答即可.

(1)ABDC,

∴∠CAB=∠ACD

AC平分∠BAD,

∴∠CAB=∠CAD

∴∠CAD=∠ACD

DADC

ABAD,

ABDC

∴四邊形ABCD是平行四邊形.

ABAD,

∴四邊形 ABCD是菱形;

(2)∵四邊形 ABCD是菱形,∠DAB60°,

∴∠OAB30,∠AOB90°

AB4

OB2,AOOC2

CEDB,

∴四邊形 DBEC是平行四邊形.

CEDB4,∠ACE90°

.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】(1)(感知)如圖①,四邊形均為正方形.的數量關系為________;

(2)(拓展)如圖②,四邊形均為菱形,且.請判斷的數量關系,并說明理由;

(3)(應用)如圖③,四邊形、均為菱形,點在邊上,點延長線上.,,的面積為9,則菱形的面積為_______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,已知直線y=x+8x軸、y軸分別交于AB兩點.直線OD⊥直線AB于點D.現有一點P從點D出發(fā),沿線段DO向點O運動,另一點Q從點O出發(fā),沿線段OA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度,當點P運動到O時,兩點都停止.設運動時間為t秒.

1)點A的坐標為_____;線段OD的長為_____

2)設OPQ的面積為S,求St之間的函數關系(不要求寫出取值范圍),并確定t為何值時S的值最大?

3)是否存在某一時刻t,使得OPQ為等腰三角形?若存在,寫出所有滿足條件的t的值;若不存在,則說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等腰三角形ABC中,AB=AC=5cm,BC=8cm,動點N從點C出發(fā),沿線段CB2cm/s的速度向點B運動,并在達到點B后,立即以同樣的速度返回向點C運動;同時動點M從點B出發(fā),沿折線B﹣A﹣C1cm/s的速度向點C運動,當點N回到點C時,兩個動點同時停止運動.⊙M是以M為圓心,1cm為半徑的圓,設運動時間為t(s) (t>0)

(1)tanB=   

(2)當點M在線段AB上運動,且⊙MBC相切時,求t的值;

(3)當t為何值時,⊙M與折線B﹣A﹣C的兩個交點在等腰三角形ABC對稱軸的同側,且經過交點和點N的直線與⊙M相切?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形 ABCD 的邊長為 2,以點 A 為圓心,1 為半徑作圓,點 E 是⊙A 上的任意 一點,點 E 繞點 D 按逆時針方向轉轉 90°,得到點 F,接 AF,則 AF 的最大值是______________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了解陽光體育活動的開展情況,從全校2000名學生中,隨機抽取部分學生進行問卷調查(每名學生只能填寫一項自己喜歡的活動項目),并將調查結果繪制成如下兩幅不完整的統計圖.

根據以上信息,解答下列問題:

1)被調查的學生共有   人,并補全條形統計圖;

2)在扇形統計圖中,m   ,n   ,表示區(qū)域C的圓心角為   度;

3)全校學生中喜歡籃球的人數大約有多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 觀察下列兩個等式:2+22×23+3×,給出定義如下:我們稱使等式a+bab成立的一對有理數ab為“有趣數對”,記為(a,b)如:數對(2,2),(3,)都是“有趣數對”.

1)數對(0,0),(5,)中是“有趣數對”的是   ;

2)若(a)是“有趣數對”,求a的值;

3)請再寫出一對符合條件的“有趣數對”   

(注意:不能與題目中已有的“有趣數對”重復)

4)若(a2+a,4)是“有趣數對”求32a22a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD,FAB上一點,HBC延長線上一點連接FH,FBH沿FH翻折,使點B的對應點E落在ADEHCD交于點G,連接BGFH于點M,GB平分CGEBM=2,AE=8,ED=______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:一組數據x1,x2,x3,x4,x5的平均數是2,方差是,那么另一組數據3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數和方差分別是( 。

A. 2, B. 2,1 C. 4, D. 4,3

查看答案和解析>>

同步練習冊答案