【題目】關(guān)于x的方程(k-1)x2+2kx+2=0
(1)求證:無論k為何值,方程總有實(shí)數(shù)根。
(2)設(shè)x1,x2是方程(k-1)x2+2kx+2=0的兩個(gè)根,記S=++ x1+x2,S的值能為2嗎?若能,求出此時(shí)k的值。若不能,請(qǐng)說明理由。
【答案】(1)詳見解析;(2)S的值能為2,此時(shí)k的值為2.
【解析】
試題分析:(1) 本題二次項(xiàng)系數(shù)為(k-1),可能為0,可能不為0,故要分情況討論;要保證一元二次方程總有實(shí)數(shù)根,就必須使△>0恒成立;(2)欲求k的值,先把此代數(shù)式變形為兩根之積或兩根之和的形式,代入數(shù)值計(jì)算即可.
試題解析:⑴①當(dāng)k-1=0即k=1時(shí),方程為一元一次方程2x=1,
x=有一個(gè)解;
②當(dāng)k-1≠0即k≠1時(shí),方程為一元二次方程,
△=(2k)-4×2(k-1)=4k-8k+8=4(k-1) +4>0
方程有兩不等根
綜合①②得不論k為何值,方程總有實(shí)根
⑵∵x +x =,x x =
∴S=++ x1+x2
=
=
=
=
=2k-2=2,
解得k=2,
∴當(dāng)k=2時(shí),S的值為2
∴S的值能為2,此時(shí)k的值為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)六邊形的各條邊都相等,當(dāng)邊長(zhǎng)為3 cm時(shí),它的周長(zhǎng)為__________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知線段AB的兩個(gè)端點(diǎn)分別是A(﹣4,﹣1),B(1,1),將線段AB平移后得到線段A′B′,若點(diǎn)A′的坐標(biāo)為(﹣2,2),則點(diǎn)B′的坐標(biāo)為( )
A.(4,3)
B.(3,4)
C.(﹣1,﹣2)
D.(﹣2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a2a3=a6
B.(a2)3=a5
C.(﹣2a2b)3=﹣8a6b3
D.(2a+1)2=4a2+2a+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的位置如圖(每個(gè)小正方形的邊長(zhǎng)均為1).
(1)請(qǐng)畫出△ABC沿x軸向右平移3個(gè)單位長(zhǎng)度,再沿y軸向上平移2個(gè)單位長(zhǎng)度后的△A′B′C′(其中A′、B′、C′分別是A、B、C的對(duì)應(yīng)點(diǎn),不寫畫法).
(2)直接寫出A′、B′、C′三點(diǎn)的坐標(biāo):
A′(); B′();
C′( ).
(3)求△ABC的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在6×4的正方形網(wǎng)格中,點(diǎn)A、B、C、D、E、F都在格點(diǎn)上.連接點(diǎn)A、B得線段AB.
(1)連接C、D、E、F中的任意兩點(diǎn),共可得 條線段,在圖中畫出來;
(2)在(1)中所連得的線段中,與AB平行的線段是 ;
(3)用三角尺或量角器度量、檢驗(yàn),AB及(1)中所連得的線段中,互相垂直的線段有幾對(duì)?(請(qǐng)用“⊥”表示出來) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求證:無論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1,x2,且滿足,求實(shí)數(shù)p的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com