如圖,在ABCD中,E為CD上一點(diǎn),連接AE、BD,且AE、BD交于點(diǎn)F,DE:EC=2:3,則SDEF:SABF=( 。

A. 2:3     B. 4:9     C. 2:5     D. 4:25

 

【答案】

D.

【解析】

試題分析:先根據(jù)平行四邊形的性質(zhì)及相似三角形的判定定理得出△DEF∽△BAF,從而DE:AB=DE:DC=2:5,所以SDEF:SABF=4:25

試題解析:∵四邊形ABCD是平行四邊形,

∴AB∥CD,BA=DC

∴∠EAB=∠DEF,∠AFB=∠DFE,

∴△DEF∽△BAF,

∴DE:AB=DE:DC=2:5,

∴SDEF:SABF=4:25,

考點(diǎn):1.相似三角形的判定與性質(zhì);2.三角形的面積;3.平行四邊形的性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA=10cm,OC=6cm.F是線段OA上的動點(diǎn),從點(diǎn)O出發(fā),以1cm/s的速度沿OA方向作勻速運(yùn)動,點(diǎn)Q在線段AB上.已知A、Q兩點(diǎn)間的距離是O、F兩點(diǎn)間距離的a倍.若用(a,t)表示經(jīng)過時間t(s)時,△OCF、△FAQ、△CBQ中有兩個三角形全等.請寫出(a,t)的所有可能情況
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,在正方形ABCD中,E為DC邊上的點(diǎn),連接BE,將△BCE繞點(diǎn)C順時針方向旋轉(zhuǎn)90°得到△DCF,連接EF,若∠BEC=60°,則∠EFD的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在一個由4×4個小正方形組成的正方形網(wǎng)格中,陰影部分面積與正方形ABCD的面積比是( 。
A、5:8B、3:4C、9:16D、1:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,拋物線y=
1
18
x2-
4
9
x-10與y軸的交點(diǎn)為點(diǎn)B,過點(diǎn)B作x軸的平行線BC,交拋物線于點(diǎn)C,連接AC.現(xiàn)有兩動點(diǎn)P,Q分別從O,C兩點(diǎn)同時出發(fā),點(diǎn)P以每秒4個單位的速度沿OA向終點(diǎn)A移動,點(diǎn)Q以每秒1個單位的速度沿CB向點(diǎn)B移動,點(diǎn)P停止運(yùn)動時,點(diǎn)Q也同時停止運(yùn)動,線段OC,PQ相交于點(diǎn)D,過點(diǎn)D作DE∥OA,交CA于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動點(diǎn)P,Q移動的時間為t(單位:秒).
(1)求A,B,C三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)的坐標(biāo);
(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計(jì)算過程;
(3)當(dāng)0<t<
9
2
時,△PQF的面積是否總為定值?若是,求出此定值,精英家教網(wǎng)若不是,請說明理由;
(4)當(dāng)t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

同步練習(xí)冊答案