【題目】如圖,△ABC是邊長為5cm的等邊三角形,點P,Q分別從頂點A,B同時出發(fā),沿線段AB,BC運動,且它們的速度都為1cm/s.當點P到達點B時,P,Q兩點停止運動,設(shè)點P的運動時間為t(s).
(1)當t為何值時,△PBQ是直角三角形?
(2)連接AQ、CP,相交于點M,則點P,Q在運動的過程中,∠CMQ會變化嗎?若變化,則說明理由;若不變,請求出它的度數(shù).
【答案】(1)當?shù)?/span>秒或第秒時,△PBQ為直角三角形;(2)∠CMQ=60°不變,理由詳見解析.
【解析】
(1)需要分類討論:分∠PQB=90°和∠BPQ=90°兩種情況;
(2)∠CMQ=60°不變.通過證△ABQ≌△CAP(SAS)得到:∠BAQ=∠ACP,由三角形外角定理得到∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.
(1)設(shè)時間為t,則AP=BQ=t,PB=5-t,
①當∠PQB=90°時,
∵∠B=60°,
∴PB=2BQ,得5-t=2t,t=;
②當∠BPQ=90°時,
∵∠B=60°,
∴BQ=2BP,得t=2(5-t),t=;
∴當?shù)?/span>秒或第秒時,△PBQ為直角三角形;
(2)∠CMQ=60°不變.
在△ABQ與△CAP中,
,
∴△ABQ≌△CAP(SAS),
∴∠BAQ=∠ACP,
∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線:.
求拋物線的對稱軸;
無論a為何值,拋物線都經(jīng)過兩個定點,求這兩個定點的坐標;
將拋物線沿中兩個定點所在直線翻折,得到拋物線,當的頂點到x軸的距離為1時,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,AB=AC,,點D,E分別在AB,BC上,,點F為DE的延長線與AC的延長線的交點.
(1)求證:DE=EF
(2)判斷BD和CF的數(shù)量關(guān)系,并說明理由;
(3)若,,求BD的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸分別交于A(1,0),B(3,,0)兩點,與軸交于點C.
(1)求此二次函數(shù)解析式;
(2)點D為拋物線的頂點,試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,∠C = 90°,.D為BC上一點,且到A,B兩點的距離相等.
(1)用直尺和圓規(guī),作出點D的位置(不寫作法,保留作圖痕跡);
(2)連結(jié)AD,若∠B = 35°,求∠CAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠ABC=90°,D是直線AB上的點,AD=BC.
(1)如圖1,過點A作AF⊥AB,截取AF=BD,連接DC、DF、CF,判斷△CDF的形狀并證明;
(2)如圖2,E是直線BC上一點,且CE=BD,直線AE、CD相交于點P,∠APD的度數(shù)是一個固定的值嗎?若是,請求出它的度數(shù);若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com