【題目】要使等式(x﹣y)2+M=(x+y)2成立,整式M應(yīng)是( 。

A. 2xy B. 4xy C. ﹣4xy D. ﹣2xy

【答案】B

【解析】

根據(jù)加數(shù)與和的關(guān)系得到:M=(x+y)2﹣(x﹣y)2,對右邊的式子化簡即可.

由題意得:M=(x+y)2﹣(x﹣y)2=4xy.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有下列判定,其中正確的有( ) ①若∠1=∠3,則AD∥BC;
②若AD∥BC,則∠1=∠2=∠3;
③若∠1=∠3,AD∥BC,則∠1=∠2;
④若∠C+∠3+∠4=180°,則AD∥BC.

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=,BC=.某課題小組利用這張矩形紙片依次進(jìn)行如下操作(每次折疊后均展開).

如圖,第一次將紙片折疊,使點(diǎn)B與點(diǎn)D重合,折痕與BD交與點(diǎn)O1,設(shè)O1D的中點(diǎn)為D1;

如圖,第二次將紙片折疊,使點(diǎn)B與點(diǎn)D1重合,折痕與BD交與點(diǎn)O2,設(shè)O2D3的中點(diǎn)為D2;

如圖,第三次將紙片折疊,使點(diǎn)B與點(diǎn)D2重合,折痕與BD交與點(diǎn)O3,設(shè)O3D2的中點(diǎn)為D3;

根據(jù)以上操作結(jié)果,回答下列問題:

(1)如圖,MN是折痕,求證:DAM≌△DCN;

(2)分別求出線段BO1、BO2、BO3的長,并直接寫出第n次折疊后BOn的長(用含n的式子表示);

(3)如圖,第二次折疊時(shí),折痕一定會經(jīng)過點(diǎn)A嗎?請通過計(jì)算判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下列圖形:①線段,②三角形,③平行四邊形,④正方形,⑤等腰三角形,⑥菱形,其中不是中心對稱圖形的是_____(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標(biāo)系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)B旋轉(zhuǎn)到點(diǎn)C的位置,一條拋物線正好經(jīng)過點(diǎn)O,C,A三點(diǎn).

(1)求該拋物線的解析式;

(2)在x軸上方的拋物線上有一動點(diǎn)P,過點(diǎn)P作x軸的平行線交拋物線于點(diǎn)M,分別過點(diǎn)P,點(diǎn)M作x軸的垂線,交x軸于E,F(xiàn)兩點(diǎn),問:四邊形PEFM的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.

(3)如果x軸上有一動點(diǎn)H,在拋物線上是否存在點(diǎn)N,使O(原點(diǎn))、C、H、N四點(diǎn)構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】0.00813用科學(xué)記數(shù)法表示為( )
A.8.13×103
B.81.3×104
C.8.13×104
D.81.3×103

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算2aa2﹣a3的結(jié)果是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x一元二次方程x2+mx+n0

1)當(dāng)mn+2時(shí),利用根的判別式判斷方程根的情況.

2)若方程有實(shí)數(shù)根,寫出一組滿足條件的m,n的值,并求此時(shí)方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D,E,F(xiàn)分別是AB,BC,CA的中點(diǎn),AH是邊BC上的高.

(1)求證:四邊形ADEF是平行四邊形;

(2)求證:DHF=DEF.

查看答案和解析>>

同步練習(xí)冊答案