(2013•昭通)如圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn),點(diǎn)M是AB邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交CD的延長(zhǎng)線于點(diǎn)N,連接MD,AN.
(1)求證:四邊形AMDN是平行四邊形.
(2)當(dāng)AM的值為何值時(shí),四邊形AMDN是矩形?請(qǐng)說(shuō)明理由.
分析:(1)根據(jù)菱形的性質(zhì)可得ND∥AM,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠NDE=∠MAE,∠DNE=∠AME,根據(jù)中點(diǎn)的定義求出DE=AE,然后利用“角角邊”證明△NDE和△MAE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等得到ND=MA,然后利用一組對(duì)邊平行且相等的四邊形是平行四邊形證明;
(2)根據(jù)矩形的性質(zhì)得到DM⊥AB,再求出∠ADM=30°,然后根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半解答.
解答:(1)證明:∵四邊形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
∵點(diǎn)E是AD中點(diǎn),
∴DE=AE,
在△NDE和△MAE中,
∠NDE=∠MAE
∠DNE=∠AME
DE=AE
,
∴△NDE≌△MAE(AAS),
∴ND=MA,
∴四邊形AMDN是平行四邊形;

(2)AM=1.
理由如下:∵四邊形ABCD是菱形,
∴AD=AB=2,
∵平行四邊形AMDN是矩形,
∴DM⊥AB,
即∠DMA=90°,
∵∠DAB=60°,
∴∠ADM=30°,
∴AM=
1
2
AD=1.
點(diǎn)評(píng):本題考查了菱形的性質(zhì),平行四邊形的判定,全等三角形的判定與性質(zhì),矩形的性質(zhì),熟記各性質(zhì)并求出三角形全等是解題的關(guān)鍵,也是本題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•昭通)如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•昭通)如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠B=60°.
(1)求∠ADC的度數(shù);
(2)求證:AE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•昭通)如圖1,已知A(3,0)、B(4,4)、原點(diǎn)O(0,0)在拋物線y=ax2+bx+c (a≠0)上.
(1)求拋物線的解析式.
(2)將直線OB向下平移m個(gè)單位長(zhǎng)度后,得到的直線與拋物線只有一個(gè)交點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo).
(3)如圖2,若點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點(diǎn)P的坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對(duì)應(yīng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•昭通)如圖,在⊙C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB=
34
,拋物線y=a(x-2)2+m(a≠0)經(jīng)過(guò)點(diǎn)A(4,0)與點(diǎn)(-2,6).
(1)求拋物線的解析式;
(2)直線m與⊙C相切于點(diǎn)A,交y軸于點(diǎn)D,動(dòng)點(diǎn)P在線段OB上,從點(diǎn)O出發(fā)向點(diǎn)B運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在線段DA上,從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng),點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng).當(dāng)PQ⊥AD時(shí),求運(yùn)動(dòng)時(shí)間t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案