【題目】根據(jù)國家發(fā)改委實施階梯電價的有關(guān)文件要求,三明市結(jié)合地方實際,決定對居民生活用電試行階梯電價收費,具體收費標準見表:

一戶居民一個月用電量的范圍

電費價格(單位:元/千瓦時)

不超過150千瓦時

a

超過150千瓦時的部分

b

20175月份,居民甲用電100度,交電費80元;居民乙用電190度,交電費160元.

(1)表中,a=   ,b=   ;

(2)試行階梯電價收費以后,該市一戶居民20178月份平均電價每度為0.9元,求該用戶8月用電多少度?

【答案】(1)0.8;1;(2)該用戶8月用電300度.

【解析】

(1)利用居民甲用電100度時,交電費80元,可以求出a的值,進而利用居民乙用電190度時,交電費160元,求出b的值即可;
(2)設居民月用電為x度,根據(jù)居民20168月份平均電價每度為0.9元,列方程求解.

(1)根據(jù)題意得:

解得:

故答案為:0.8;1.

(2)設該用戶8月用電x度,

根據(jù)題意得:150×0.8+1×(x﹣150)=0.9x,

解得:x=300.

答:該用戶8月用電300度.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】2016928-1231日,山東臨沂燈展中千萬盞彩燈點亮300畝天然花海.某日,從晚上17時開始每小時進入燈展的人數(shù)約為900人(之前該燈展有游客400人),同時每小時走出燈展的人數(shù)約為600人,已知該燈展的飽和人數(shù)約為1600人,則該燈展人數(shù)飽和時的時間約為( 。

A. 21 B. 22 C. 23 D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+2xa+c經(jīng)過A(﹣4,0),B(0,4)兩點,與x軸交于另一點C,直線y=x+5與x軸交于點D,與y軸交于點E.

(1)求拋物線的解析式;
(2)點P是第二象限拋物線上的一個動點,連接EP,過點E作EP的垂線l,在l上截取線段EF,使EF=EP,且點F在第一象限,過點F作FM⊥x軸于點M,設點P的橫坐標為t,線段FM的長度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,過點E作EH⊥ED交MF的延長線于點H,連接DH,點G為DH的中點,當直線PG經(jīng)過AC的中點Q時,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(0,2),AOB為等邊三角形,P是x軸上一個動點(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形APQ.

(1)求點B的坐標;

(2)在點P的運動過程中,ABQ的大小是否發(fā)生改變?如不改變,求出其大小;如改變,請說明理由.

(3)連接OQ,當OQAB時,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一件工程甲獨做50天可完,乙獨做75天可完,現(xiàn)在兩個人合作,但是中途乙因事離開幾天,從開工后40天把這件工程做完,則乙中途離開了( 。┨欤

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點OBD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結(jié)論:①DE=DF②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學七年級A班有50人,某次活動中分為四組,第一組有人,第二組是第一組的2倍多6人,第三組的人數(shù)等于第一組與第二組人數(shù)的和.

(1)第二組的人數(shù) ,第三組的人數(shù) ;(用含的式子表示)

(2)求第四組的人數(shù).(用含的式子表示)

(3)試判斷當a=7時,是否滿足題意.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算: ﹣(3﹣π)0﹣|﹣3+2|;
(2)計算: ÷(1+

查看答案和解析>>

同步練習冊答案