精英家教網(wǎng)如圖,正方形的邊長(zhǎng)為a,小圓的直徑是b,S表示正方形面積與大圓面積的差,A是小圓面積,設(shè)圓周率為π,則
SA
=
 
分析:S=邊長(zhǎng)為a的正方形的面積-直徑為a的大圓的面積;A=直徑為b的小圓的面積,讓S÷A即可.
解答:解:正方形的面積為a2,
大圓的面積為π×(
a
2
2=
π
4
a2
∴S=a2-
π
4
a2=
4-π
4
a2
∵A=π×(
b
2
2=
π
4
b2
S
A
=
(4-π)a2
πb2

故答案為
(4-π)a2
πb2
點(diǎn)評(píng):考查幾何圖形中的列代數(shù)式問題,得到S和A的關(guān)系式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形的邊長(zhǎng)為x,用整式表示圖中陰影部分的面積為
 
(保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形的邊長(zhǎng)為1,E點(diǎn)為的中點(diǎn),以E為圓心,1為半徑作圓,分別交于兩點(diǎn),與CD切于點(diǎn)P.則圖中陰影部分的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,正方形的邊長(zhǎng)為x,圓的半徑為r,用整式表示圖中陰影部分的面積為
πr2-x2

(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請(qǐng)你閱讀引例及其分析解答,希望能給你以啟示,然后完成對(duì)探究一和探究二中間題的解答.
引例:設(shè)a,b,c為非負(fù)實(shí)數(shù),求證:
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c),
分析:考慮不等式中各式的幾何意義,我們可以試構(gòu)造一個(gè)邊長(zhǎng)為a+b+c的正方形來研究.
解:如圖①設(shè)正方形的邊長(zhǎng)為a+b+c,
則AB=
a2+b2
,
BC=
b2+c 2

CD=
a2+c2
,
顯然AB+BC+CD≥AD,
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c)
探究一:已知兩個(gè)正數(shù)x、y,滿足x+y=12,求
x2+4
+
y2+9
的最小值:
解:(圖②僅供參考)
探究二:若a、b為正數(shù),求以
a2+b2
4a2+b2
,
a2+4b2
為邊的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形的邊長(zhǎng)為10cm,求圖中陰影部分的面積.(π取3.142,結(jié)果保留4位有效數(shù)字)

查看答案和解析>>

同步練習(xí)冊(cè)答案