如圖,已知:AD是△ABC的角平分線,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度數(shù).
分析:根據(jù)AD是△ABC的角平分線,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度數(shù),進而得出∠ADB的度數(shù).
解答:解:∵AD是△ABC的角平分線,∠BAC=60°,
∴∠DAC=∠BAD=30°,
∵CE是△ABC的高,∠BCE=40°,
∴∠B=50°,
∴∠ADB=180°-∠B-∠BAD=180°-30°-50°=100°.
點評:此題主要考查了角平分線的性質以及高線的性質和三角形內(nèi)角和定理,根據(jù)已知得出∠B的度數(shù)是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、如圖,已知線段AD是△ABC的中線,且AB=6,AD=4,AC邊長為奇數(shù).求邊AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,已知:AD是BC上的中線,E點在AD延長線上,且DF=DE.
求證:BE∥CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:AD是Rt△ABC斜邊BC上的高線,DE是Rt△ADC斜邊AC上的高線,如果DC:AD=1:2,S△CDE=a,那么S△ABC等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:AD是⊙O的直徑,AB、AC是弦,且AB=AC.
(1)求證:直徑AD平分∠BAC;
(2)若BC經(jīng)過半徑OA的中點E,F(xiàn)是
CD
的中點,G是
FB
中點,⊙O的半徑為1,求GF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知:AD是BC上的中線,BE⊥AD于點E,且DF=DE.求證:CF⊥AD.

查看答案和解析>>

同步練習冊答案