【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過點(diǎn)(0,﹣3),請你確定一個(gè)b的值,使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間.你確定的b的值是

【答案】1(在﹣2<b<2范圍內(nèi)的任何一個(gè)數(shù))
【解析】解:把(0,﹣3)代入拋物線的解析式得:c=﹣3, ∴y=x2+bx﹣3,
∵使該拋物線與x軸的一個(gè)交點(diǎn)在(1,0)和(3,0)之間,
∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0
把x=3代入y=x2+bx﹣3得:y=9+3b﹣3>0,
∴﹣2<b<2,
即在﹣2<b<2范圍內(nèi)的任何一個(gè)數(shù)都符合,
故答案為:1(在﹣2<b<2范圍內(nèi)的任何一個(gè)數(shù)).
把(0,﹣3)代入拋物線的解析式求出c的值,在(1,0)和(3,0)之間取一個(gè)點(diǎn),分別把x=1和x=3它的坐標(biāo)代入解析式即可得出不等式組,求出答案即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A、B、C、D均在以BC為直徑的圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長為10,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為等邊三角形,AB=2,點(diǎn)D為邊AB上一點(diǎn),過點(diǎn)D作DE∥AC,交BC于E點(diǎn);過E點(diǎn)作EF⊥DE,交AB的延長線于F點(diǎn).設(shè)AD=x,△DEF的面積為y,則能大致反映y與x函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,①②③④⑤五個(gè)平行四邊形拼成一個(gè)含30°內(nèi)角的菱形EFGH(不重疊無縫隙).若①②③④四個(gè)平行四邊形面積的和為14cm2 , 四邊形ABCD面積是11cm2 , 則①②③④四個(gè)平行四邊形周長的總和為(
A.48cm
B.36cm
C.24cm
D.18cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,以BC為直徑的圓交AB于點(diǎn)D,∠ACD=∠ABC.
(1)求證:CA是圓的切線;
(2)若點(diǎn)E是BC上一點(diǎn),已知BE=6,tan∠ABC= ,tan∠AEC= ,求圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知正方形OABC的邊長為2,頂點(diǎn)A、C分別在x、y軸的正半軸上,M是BC的中點(diǎn).P(0,m)是線段OC上一動(dòng)點(diǎn)(C點(diǎn)除外),直線PM交AB的延長線于點(diǎn)D.

(1)求點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);
(2)當(dāng)△APD是等腰三角形時(shí),求m的值;
(3)設(shè)過P、M、B三點(diǎn)的拋物線與x軸正半軸交于點(diǎn)E,過點(diǎn)O作直線ME的垂線,垂足為H(如圖2),當(dāng)點(diǎn)P從點(diǎn)O向點(diǎn)C運(yùn)動(dòng)時(shí),點(diǎn)H也隨之運(yùn)動(dòng).請直接寫出點(diǎn)H所經(jīng)過的路徑長.(不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國國際動(dòng)漫節(jié)以“動(dòng)漫的盛會(huì),人民的節(jié)日”為宗旨,以“動(dòng)漫我的城市,動(dòng)漫我的生活”為主題,已在杭州成功舉辦七屆.目前,它成為國內(nèi)規(guī)模最大、交易最旺、影響最廣的動(dòng)漫專業(yè)盛會(huì). 下面是自首屆以來各屆動(dòng)漫產(chǎn)品成交金額統(tǒng)計(jì)圖表(部分未完成):

(1)請根據(jù)所給的信息將統(tǒng)計(jì)圖表補(bǔ)充完整;
(2)從哪屆開始成交金額超過百億元?相鄰兩屆中,哪兩屆的成交金額增長最快?
(3)求第五屆到第七屆的平均增長率,并用它預(yù)測第八屆中國國際動(dòng)漫節(jié)的成交金額(精確到億元)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣3x+ 與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D是直線BC下方拋物線上一點(diǎn),過點(diǎn)D作y軸的平行線,與直線BC相交于點(diǎn)E
(1)求直線BC的解析式;
(2)當(dāng)線段DE的長度最大時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+(2m+1)x+m(m﹣3)(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,y1),B( ,y2),C(﹣m,y3)是該拋物線上不同的三點(diǎn),現(xiàn)將拋物線的對稱軸繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到直線a,過拋物線頂點(diǎn)P作PH⊥a于H.

(1)用含m的代數(shù)式表示拋物線的頂點(diǎn)坐標(biāo);
(2)若無論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個(gè)公共點(diǎn),求k的值;
(3)當(dāng)1<PH≤6時(shí),試比較y1 , y2 , y3之間的大。

查看答案和解析>>

同步練習(xí)冊答案