【題目】如圖,在△ABC中,D為BC的中點,E,F分別是AB,AC上的點,且DE⊥DF.
求證:BE+CF>EF.

【答案】證明:如圖,延長ED至點M,使DM=ED,連接MC,MF,則EF=FM .
∵BD=CD,ED=DM,∠EDB=∠CDM,
∴△BDE≌△CDM(SAS).
∴BE=CM.
∵CF+CM>MF,
∴BE+CF>EF.
【解析】延長ED至點M,使DM=ED,連接MC,MF,根據(jù)中垂線的性質(zhì)得出 :EF=FM ,然后利用SAS判斷出△BDE≌△CDM ,根據(jù)全等三角形的對應(yīng)邊相等得出BE=CM ,根據(jù)三角形三邊之間的關(guān)系得出CF+CM>MF,然后等量代換得出BE+CF>EF. 。
【考點精析】認真審題,首先需要了解三角形三邊關(guān)系(三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊),還要掌握線段垂直平分線的性質(zhì)(垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1y=(x-1)2+1與y軸交于點A,過點A與點(1,3)的直線與C1交于點B

(1) 求直線AB的函數(shù)表達式

(2) 如圖1,若點P為直線AB下方的C1上一點,求點P到直線AB的距離的最大值

(3) 如圖2,將直線AB繞點A順時針旋轉(zhuǎn)90°后恰好經(jīng)過C1的頂點C,沿射線AC的方向平移拋物線C1得到拋物線C2,C2的頂點為D,兩拋物線相交于點E.設(shè)交點E的橫坐標為m.若∠AED=90°,求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知線段AB的兩個端點分別是A(4,﹣1),B(1,1)將線段AB平移后得到線段A′B′,若點A的坐標為(﹣2,2),則點B′的坐標為( )
A.(﹣5,4)
B.(4,3)
C.(﹣1,﹣2)
D.(﹣2,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x = 2是關(guān)于x的方程2x -a =1的解,則a的值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(2x+3)(x-1)-(x-3)2 = (x+2)(x-2)-29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接杭州G20峰會,某校開展了設(shè)計“YJG20”圖標的活動,下列圖形中既是軸對稱圖形又是中心對稱圖形的是( )

                

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義運算:ab=a(1b).若a,b是方程x2x+m=0(m0)的兩根,則bbaa的值為

A. 0 B. 1 C. 2 D. m有關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC 中,∠C=90°,BC=3,AC=4.現(xiàn)在要將交ABC 擴充成等腰三角形,且擴充的部分是以AC為直角邊的直角三角形,求擴充后等腰三角形的周長.

趙佳同學(xué)是這樣操作的:如圖 1 所示,延長BC 到點 D,使CD=BC,連接AD.所以,△ADB 為符合條件的三角形.則此時△ADB的周長為____________

請你在圖2、圖3中再設(shè)計兩種擴充方案,并直接寫出擴充后等腰三角形的周長.

圖2的周長:______________;圖3的周長:______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請認真觀察圖形,解答下列問題:

1)根據(jù)圖中條件,用兩種方法表示兩個陰影圖形的面積的和(只需表示,不必化簡);并由此得到怎樣的等量關(guān)系?請用等式表示;

2)如果圖中的abab)滿足a2+b2=53,ab=14求:①a+b的值; ab的值.

查看答案和解析>>

同步練習(xí)冊答案