【題目】如圖,拋物線軸交于點(diǎn),其對(duì)稱軸為直線,結(jié)合圖象分析下列結(jié)論:①;②;③當(dāng)時(shí),的增大而增大;④一元二次方程的兩根分別為,;⑤;⑥若,為方程的兩個(gè)根,則,其中正確的結(jié)論有(  )

A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)

【答案】C

【解析】

利用二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合圖象依次對(duì)各結(jié)論進(jìn)行判斷.

解:拋物線軸交于點(diǎn),其對(duì)稱軸為直線

拋物線軸交于點(diǎn),且

由圖象知:,

故結(jié)論①正確;

拋物線x軸交于點(diǎn)

故結(jié)論②正確;

當(dāng)時(shí),yx的增大而增大;當(dāng)時(shí),的增大而減小

結(jié)論③錯(cuò)誤;

,

拋物線軸交于點(diǎn)

的兩根是

,

即為:,解得;

故結(jié)論④正確;

當(dāng)時(shí),

故結(jié)論⑤正確;

拋物線軸交于點(diǎn),

為方程的兩個(gè)根

,為方程的兩個(gè)根

為函數(shù)與直線的兩個(gè)交點(diǎn)的橫坐標(biāo)

結(jié)合圖象得:

故結(jié)論⑥成立;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5小時(shí)內(nèi)其血液中酒精含量y(毫克/百毫升)與時(shí)間x(時(shí))成正比例;1.5小時(shí)后(包括1.5小時(shí))yx成反比例.根據(jù)圖中提供的信息,解答下列問題:

1)寫出一般成人喝半斤低度白酒后,yx之間的函數(shù)關(guān)系式及相應(yīng)的自變量取值范圍;

2)按國(guó)家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時(shí)屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上2100在家喝完半斤低度白酒,第二天早上700能否駕車去上班?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(1,0),C點(diǎn)坐標(biāo)為(70),若點(diǎn)P在直線ykx+3上運(yùn)動(dòng)時(shí),只存在一個(gè)點(diǎn)P使∠APC90°,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等邊三角形,將四邊形ACBD沿直線EF折疊,使DC重合,CE與CF分別交AB于點(diǎn)G、H.

1)求證:△AEG∽△CHG;

2△AEG與△BHF是否相似,并說明理由;

(3)若BC=1,求cos∠CHG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點(diǎn),ABOAx軸于點(diǎn)B,且OA=AB.

(1)求雙曲線的解析式;

(2)求點(diǎn)C的坐標(biāo),并直接寫出y1<y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中有為原點(diǎn),,將此三角形繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,拋物線三點(diǎn)

1)求此拋物線的解析式及頂點(diǎn)的坐標(biāo);

2)直線與拋物線交于兩點(diǎn),若,求的值;

3)拋物線的對(duì)稱軸上是否存在一點(diǎn)使得為直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),且.

1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);

2)判斷的形狀,證明你的結(jié)論;

3)點(diǎn)是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)周長(zhǎng)最小時(shí),求點(diǎn)的坐標(biāo)及的最小周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰中,BC邊上的高,且,則等腰底角的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個(gè)高度不同,跨徑也不同的拋物線型鋼拱通過吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點(diǎn),拱高為78(即最高點(diǎn)OAB的距離為78),跨徑為90(AB=90),以最高點(diǎn)O為坐標(biāo)原點(diǎn),以平行于AB的直線為軸建立平面直角坐標(biāo)系,則此拋物線鋼拱的函數(shù)表達(dá)式為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案