如圖,第一象限內(nèi)半徑為4的⊙C與y軸相切于點A,作直徑AD,過點D作⊙C的切線l交x軸于點B,P為直線l上一動點,已知直線PA的解析式為:y=kx+6。
(1)設(shè)點P的縱坐標為p,寫出p隨k變化的函數(shù)關(guān)系式;
(2)設(shè)⊙C與PA交于點M,與AB交于點N,則不論動點P處于直線l上(除點B以外)的什么位置時,都有△AMN∽△ABP,請你對于點P處于圖中位置時的兩三角形相似給予證明;
(3)是否存在△AMN的面積等于?若存在,請求出符合的k值;若不存在,請說明理由。
解:(1)∵y軸和直線l都是⊙C的切線,
∴OA⊥AD,BD⊥AD,
又OA⊥OB,
∴∠AOB=∠OAD=∠ADB=90°,
∴四邊形OADB是矩形,
∵⊙C的半徑為4,
∴AD=OB,
∵點P在直線l上,
∴點P的坐標為(8,p),
又∵點P也在直線AP上,
∴p=8k+6;
(2)連接DN,
∵AD是⊙C的直徑,
∴∠AND=90°,
∵∠ADN=90°-∠DAN,∠ABD=90°-∠DAN,
∴∠ADN=∠ABD,
∵∠ADN=∠AMN,
∴∠AMN=∠ABD,
又∵∠MAN=∠BAP,
∴△AMN∽△ABP;
(3)存在;
理由:把x=0代入y=kx+6得y=6,即OA=BD=6,
在Rt△ABD中,由勾股定理得AB=10,
∵S△ABD=
∴DN=,

∵△AMN∽△ABP,
,即,
當點P在B點上方時,
,

,
整理得,,
解得,
當點P在B點下方時,

,
,
化簡,得,解得k=-2,
綜合以上所述得,當時,△AMN的面積等于。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,第一象限內(nèi)半徑為2的⊙C與y軸相切于點A,作直徑AD,過點D作⊙C的切線l交x軸于點B,P為直線l上一動點,已知直線PA的解析式為:y=kx+3.
(1)設(shè)點P的縱坐標為p,寫出p隨k變化的函數(shù)關(guān)系式.
(2)設(shè)⊙C與PA交于點M,與AB交于點N,則不論動點P處于直線l上(除點B以外)的什么位置時,都有△AMN∽△ABP.請你對于點P處于圖中位置時的兩三角形相似給予證明;
(3)是否存在使△AMN的面積等于
3225
的k值?若存在,請求出符合的k值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,第一象限內(nèi)半徑為4的⊙C與y軸相切于點A,作直徑AD,過點D作⊙C的切線l交x軸于點B,P為直線l上一動點,已知直線PA的解析式為:y=kx+6.
(1)設(shè)點P的縱坐標為p,寫出p隨k變化的函數(shù)關(guān)系式;
(2)設(shè)⊙C與PA交于點M,與AB交于點N,則不論動點P處于直線l上(除點B以外)的什么位置時,都有△AMN∽△ABP.請你對于點P處于圖中位置時的兩三角形相似給予證明;
(3)是否存在△AMN的面積等于
12825
?若存在,請求出符合的k值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,第一象限內(nèi)半徑為2的⊙C與y軸相切于點A,作直徑AD,過點D作⊙C的切線l交x軸于點B,P為直線l上一動點,已知直線PA的解析式為:y=kx+3.設(shè)⊙C與PA交于點M,與AB交于點N,則S△AMN=
32
25
時,k=
6
或-2
6
或-2

查看答案和解析>>

科目:初中數(shù)學 來源:2013年四川省成都市中考數(shù)學模擬試卷(二)(解析版) 題型:填空題

如圖,第一象限內(nèi)半徑為2的⊙C與y軸相切于點A,作直徑AD,過點D作⊙C的切線l交x軸于點B,P為直線l上一動點,已知直線PA的解析式為:y=kx+3.設(shè)⊙C與PA交于點M,與AB交于點N,則時,k=   

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省蘇州市初三上學期期中考試數(shù)學卷 題型:解答題

(本題滿分9分)如圖,第一象限內(nèi)半徑為2的⊙C與y軸相切于點A,作直徑AD,過點D作⊙C的切線lx軸子點B,P為直線l上一動點,已知直線PA的解析式為:y=kx+3。

    (1)設(shè)點P的縱坐標為p,寫出p隨k變化的函數(shù)關(guān)系式。

    (2)設(shè)⊙C與PA交于點M,與AB交于點N,則不論動點P處于直線l上(除點B以外)的什么位置時,都有△AMN∽△ABP。請你對于點P處于圖中位置時的兩三角形相似給予證明;

    (3)是否存在使△AMN的面積等于的k值?若存在,請求出符合的k值;若不存在,請說明理由。

 

 

查看答案和解析>>

同步練習冊答案