【題目】計(jì)算題:

(1)25.7+(﹣7.3)+(﹣13.7)+7.3

(2)

(3)﹣14﹣(1﹣0.5)×

(4)

【答案】(1)12;(2)17;(3)﹣;(4)2

【解析】

(1)先同號(hào)相加,再計(jì)算加法即可求解.

(2)將除法變?yōu)槌朔,再根?jù)乘法分配律計(jì)算即可求解.

(3)按照有理數(shù)混合運(yùn)算的順序,先乘方后乘除最后算加減,有括號(hào)的先算括號(hào)里面的.

(4)原式先計(jì)算乘方運(yùn)算,再計(jì)算乘除運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果.

(1)25.7+(﹣7.3)+(﹣13.7)+7.3

=[25.7+(﹣13.7)]+[(﹣7.3)+7.3]=12+0=12;

(2)(-(-)=(-)×(﹣36)

=18+20+(﹣21)=17;

(3)

=﹣1﹣(-3)=﹣1+=﹣

(4)+

=﹣4×-

=

=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將平行四邊形沿對(duì)折,使點(diǎn)落在點(diǎn)處,若,則的距離為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,ABCD,ADC,DAB的平分線DF,AE分別與線段BC相交于點(diǎn)F,E,DFAE相交于點(diǎn)G

1求證AEDF;

2AD10,AB6,AE4,DF的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(背景)某班在一次數(shù)學(xué)實(shí)踐活動(dòng)中,對(duì)矩形紙片進(jìn)行折疊實(shí)踐操作,并將其產(chǎn)生的數(shù)學(xué)問(wèn)題進(jìn)行相關(guān)探究. (操作)如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)P是BC邊上一點(diǎn),現(xiàn)將△APB沿AP對(duì)折,得△APM,顯然點(diǎn)M位置隨P點(diǎn)位置變化而發(fā)生改變
(問(wèn)題)試求下列幾種情況下:點(diǎn)M到直線CD的距離

(1)∠APB=75°;
(2)P與C重合;
(3)P是BC的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),弦AD平分∠BAC,交BC于點(diǎn)E,AB=6,AD=5,則AE的長(zhǎng)為(
A.2.5
B.2.8
C.3
D.3.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知A點(diǎn)從(1,0)點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)的速度沿著x軸的正方向運(yùn)動(dòng),經(jīng)過(guò)t秒后,以O(shè)、A為頂點(diǎn)作菱形OABC,使B、C點(diǎn)都在第一象限內(nèi),且∠AOC=60°,又以P(0,4)為圓心,PC為半徑的圓恰好與OA所在的直線相切,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)動(dòng)車出發(fā)前油箱內(nèi)有油42L,行駛?cè)舾尚r(shí)后途中在加油站加油若干升,油箱中余油量QL與行駛時(shí)間th之間的函數(shù)關(guān)系如圖所示,根據(jù)圖回答問(wèn)題:

1機(jī)動(dòng)車行駛 h后加油;

2加油前油箱余油量Q與行駛時(shí)間t的函數(shù)關(guān)系式是

3中途加油 L;

4如果加油站距目的地還有230km車速為40km/h,要到達(dá)目的地,油箱中的油是否夠用?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)機(jī)器人從數(shù)軸原點(diǎn)出發(fā),沿?cái)?shù)軸正方向,以每前進(jìn)3步后退2步的程序運(yùn)動(dòng)。設(shè)該機(jī)器人每秒前進(jìn)或后退1步,并且每步的距離為一個(gè)單位長(zhǎng)度,表示第n秒時(shí)機(jī)器人在數(shù)軸上位置所對(duì)應(yīng)的數(shù)。則下列結(jié)論中正確的有______.(只需填入正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y= 的圖象過(guò)點(diǎn)A(1,2).
(1)求該函數(shù)的解析式;
(2)過(guò)點(diǎn)A分別向x軸和y軸作垂線,垂足為B和C,求四邊形ABOC的面積;
(3)求證:過(guò)此函數(shù)圖象上任意一點(diǎn)分別向x軸和y軸作垂線,這兩條垂線與兩坐標(biāo)軸所圍成矩形的面積為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案