【題目】如圖,在等邊△ABC內(nèi)有一點(diǎn)D,AD=5,BD=6,CD=4,將△ABD繞A點(diǎn)逆時(shí)針旋轉(zhuǎn),使AB與AC重合,點(diǎn)D旋轉(zhuǎn)至點(diǎn)E,求∠CDE的正切值.
【答案】3
【解析】
先根據(jù)等邊三角形的性質(zhì)得AB=AC,∠BAC=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AE=5,∠DAE=∠BAC=60°,CE=BD=6,即可判定△ADE為等邊三角形,得到DE=AD=5,過點(diǎn)E作EH⊥CD于H,如圖,設(shè)DH=x,則CH=4-x,利用勾股定理得到52-x2=62-(4-x)2,解得x=,再計(jì)算出EH,然后利用正切的定義求解.
∵△ABC為等邊三角形,
∴AB=AC,∠BAC=60°,
∵將△ABD繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)得到△ACE,
∴AD=AE=5,∠DAE=∠BAC=60°,CE=BD=6,
∴△ADE為等邊三角形,
∴DE=AD=5,
過點(diǎn)E作EH⊥CD于H,如圖,設(shè)DH=x,則CH=4-x,
在Rt△DHE中,EH2=52-x2
在Rt△CHE中,EH2=62-(4-x)2,
∴52-x2=62-(4-x)2,
解得x=,
∴EH=
在Rt△DHE中,tan∠CDE=
即∠CDE的正切值是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx﹣4k+4與拋物線y=x2﹣x交于A、B兩點(diǎn).
(1)直線總經(jīng)過定點(diǎn),請直接寫出該定點(diǎn)的坐標(biāo);
(2)點(diǎn)P在拋物線上,當(dāng)k=﹣時(shí),解決下列問題:
①在直線AB下方的拋物線上求點(diǎn)P,使得△PAB的面積等于20;
②連接OA,OB,OP,作PC⊥x軸于點(diǎn)C,若△POC和△ABO相似,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+m與雙曲線相交于A(2,1)、B兩點(diǎn).
(1)求m及k的值;
(2)求出點(diǎn)B的坐標(biāo);并直接寫出x取何值時(shí),;
(3)P為直線x=上一點(diǎn),當(dāng)△ APB的面積為6時(shí),請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式;
(3)點(diǎn)P是x軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于A,B兩點(diǎn),且與坐標(biāo)軸的交點(diǎn)為(﹣6,0),(0,6),點(diǎn)B的橫坐標(biāo)為﹣4.
(1)試確定反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)直接寫出不等式的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)某海域有A,B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個(gè)圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達(dá)到最高,水柱落地處離池中心米.
(1)請你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并求出水柱拋物線的函數(shù)解析式;
(2)求出水柱的最大高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“傳承好家風(fēng)”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會(huì)從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了它們的成績,并繪制了如圖不完整的兩幅統(tǒng)計(jì)圖表.
征文比賽成績頻數(shù)分布表
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤m<70 | 38 | 0.38 |
70≤m<80 | a | 0.32 |
80≤m<90 | b | c |
90≤m≤100 | 10 | 0.1 |
合計(jì) | 1 |
請根據(jù)以上信息,解決下列問題:
(1)征文比賽成績頻數(shù)分布表中c的值是_____;
(2)補(bǔ)全征文比賽成績頻數(shù)分布直方圖;
(3)若80分以上(含80分)的征文將被評為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com