(2012•鄭州模擬)如圖,△ABC中,已知∠C=90°,∠B=55°,點(diǎn)D在邊BC上,BD=2CD.把△ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m(0<m<180)度后,如果點(diǎn)B恰好落在初始Rt△ABC的邊上,那么m=
70°或120°
70°或120°
分析:根據(jù)點(diǎn)B所落的邊不同,分①點(diǎn)B落在AB邊上時(shí),根據(jù)旋轉(zhuǎn)的性質(zhì)可得BD=BD′,然后利用等腰三角形的兩底角相等列式求出∠BDB′的度數(shù),即可得到旋轉(zhuǎn)角m;②點(diǎn)B落在AC上時(shí),根據(jù)旋轉(zhuǎn)的性質(zhì)可得BD=BD′,然后根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出∠CB′D,再根據(jù)直角三角形兩銳角互余求出∠CDB′,然后求出∠BDB′,即可得到旋轉(zhuǎn)角m.
解答:解:①如圖1,點(diǎn)B落在AB邊上時(shí),根據(jù)旋轉(zhuǎn)的性質(zhì)可得BD=BD′,
∵∠B=55°,
∴∠BDB′=180°-2×55°=180°-110°=70°,
即m=70°;
②如圖2,點(diǎn)B落在AC上時(shí),根據(jù)旋轉(zhuǎn)的性質(zhì)可得BD=BD′,
∵BD=2CD,
∴B′D=2CD,
∴∠CB′D=30°,
在Rt△B′CD中,∠CDB′=90°-30°=60°,
∠BDB′=180°-60°=120°,
即m=120°,
綜上所述,m=70°或120°.
故答案為:70°或120°.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),主要利用了等腰三角形兩個(gè)底角相等,直角三角形30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),要注意分點(diǎn)B落在AB、AC兩條邊上分情況討論求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄭州模擬)中國(guó)男子職業(yè)籃球聯(lián)賽(CBA)2011-2012賽季總決賽在廣東東莞與北京金隅兩隊(duì)之間進(jìn)行,北京金隅隊(duì)球星馬布里在前五場(chǎng)的得分情況如下:36、23、39、28、32,這組數(shù)據(jù)的極差和中位數(shù)分別是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄭州模擬)將兩張矩形紙片如圖所示擺放,使其中一張矩形紙片的一個(gè)頂點(diǎn)恰好落在另一張矩形紙片的一條邊上,若∠1=26°,則∠2的度數(shù)為
64
64
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄭州模擬)如圖,PA與⊙O相切,切點(diǎn)為A,PO交⊙O于點(diǎn)C,點(diǎn)B是優(yōu)弧
CBA
上一點(diǎn),若∠ABC=31°,則∠P的度數(shù)為
28°
28°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄭州模擬)鄭州地鐵一號(hào)線將于2013年底建成,它的通車將給市民的出行方式帶來(lái)一些新變化.小王和小林準(zhǔn)備利用課余時(shí)間,以問卷的方式對(duì)鄭州市民的出行方式進(jìn)行調(diào)查.如圖是鄭州地鐵一號(hào)線圖(部分),小王和小林分別從鄭州火車站、二七廣場(chǎng)站、市體育館站這三站中,隨機(jī)選取一站向其周圍的人群進(jìn)行問卷調(diào)查,則小王選取的站點(diǎn)與小林選取的站點(diǎn)相鄰的概率是
4
9
4
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄭州模擬)已知二次函數(shù)y=ax2+bx-2的圖象經(jīng)過點(diǎn)A(1,0)及B(-2,0)兩點(diǎn).
(1)求二次函數(shù)的表達(dá)式及拋物線頂點(diǎn)M的坐標(biāo);
(2)若點(diǎn)N為線段BM上的一點(diǎn),過點(diǎn)N作x軸的垂線,垂足為點(diǎn)Q,當(dāng)點(diǎn)N在線段BM上運(yùn)動(dòng)時(shí)(點(diǎn)N不與點(diǎn)B、點(diǎn)M重合),設(shè)NQ的長(zhǎng)為t,四邊形NQAC的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出四邊形NQAC的面積的最大值;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PAC為直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案