【題目】如圖,已知直線y=x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,且點A的橫坐標為4.
(1)求k的值.
(2)若反比例函數(shù)y=的圖象上一點C的縱坐標為8,求△AOC的面積.
(3)若過原點O的另一條直線l交反比例函數(shù)y= (k>0)的圖象于P,Q兩點(點P在第一象限),以A,B,P,Q為頂點組成的四邊形面積為24,求點P的坐標.
【答案】(1)8(2)15(3) (2,4)或(8,1)
【解析】(1)先根據(jù)直線的解析式求出A點的坐標,然后將A點坐標代入雙曲線的解析式中即可求出k的值;
(2)由(1)得出的雙曲線的解析式,可求出C點的坐標,由于△AOC的面積無法直接求出,因此可通過作輔助線,通過其他圖形面積的和差關系來求得.(解法不唯一);
(3)由于雙曲線是關于原點的中心對稱圖形,因此以A、B、P、Q為頂點的四邊形應該是平行四邊形,那么△POA的面積就應該是四邊形面積的四分之一即6.可根據(jù)雙曲線的解析式設出P點的坐標,然后參照(2)的三角形面積的求法表示出△POA的面積,由于△POA的面積為6,由此可得出關于P點橫坐標的方程,即可求出P點的坐標.
(1)∵點A橫坐標為4,
把x=4代入y=x中
得y=2,
∴A(4,2),
∵點A是直線y=x與雙曲線y=(k>0)的交點,
∴k=4×2=8;
(2)如圖,
∵點C在雙曲線上,
當y=8時,x=1,
∴點C的坐標為(1,8).
過點A、C分別做x軸、y軸的垂線,垂足為M、N,得矩形DMON.
∵S矩形ONDM=32,S△ONC=4,S△CDA=9,S△OAM=4.
∴S△AOC=S矩形ONDM-S△ONC-S△CDA-S△OAM=32-4-9-4=15;
(3)∵反比例函數(shù)圖象是關于原點O的中心對稱圖形,
∴OP=OQ,OA=OB,
∴四邊形APBQ是平行四邊形,
∴S△POA=S平行四邊形APBQ×=×24=6,
設點P的橫坐標為m(m>0且m≠4),
得P(m,),
過點P、A分別做x軸的垂線,垂足為E、F,
∵點P、A在雙曲線上,
∴S△POE=S△AOF=4,
若0<m<4,如圖,
∵S△POE+S梯形PEFA=S△POA+S△AOF,
∴S梯形PEFA=S△POA=6.
∴(2+)(4-m)=6.
∴m1=2,m2=-8(舍去),
∴P(2,4);
若m>4,如圖,
∵S△AOF+S梯形AFEP=S△AOP+S△
∴S梯形PEFA=S△POA=6.
∴(2+)(m-4)=6,
解得m1=8,m2=-2(舍去),
∴P(8,1).
∴點P的坐標是P(2,4)或P(8,1).
科目:初中數(shù)學 來源: 題型:
【題目】(概念學習)
規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,一般地,把(a≠0)記作a,讀作“a的圈n次方”.
(初步探究)
(1)直接寫出計算結果:2③=_____,(﹣)⑤=_____.
(2)關于除方,下列說法準確的選項有_________(只需填入正確的序號)
①.任何非零數(shù)的圈2次方都等于1; ②.對于任何正整數(shù)n,1=1;
③.3④=4③ ④.負數(shù)的圈奇數(shù)次方結果是負數(shù),負數(shù)的圈偶數(shù)次方結果是正數(shù).
(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?
例如: 2④=2÷2÷2÷2
=2×××
=(__)2 (冪的形式)
試一試:將下列除方運算直接寫成冪的形式.
5⑥=_____;(﹣)⑩=_____;a=_____(a≠0).
算一算:④÷23+(﹣8)×2③.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AB邊上有一動點P,連接PD,線段PD繞點P順時針旋轉(zhuǎn)90°后,得到線段PE,且PE交BC于F,連接DF,過點E作EQ⊥AB的延長線于點Q.
(1)求線段PQ的長;
(2)問:點P在何處時,△PFD∽△BFP,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y= 的圖象過點A(1,2).
(1)求該函數(shù)的解析式;
(2)過點A分別向x軸和y軸作垂線,垂足為B和C,求四邊形ABOC的面積;
(3)求證:過此函數(shù)圖象上任意一點分別向x軸和y軸作垂線,這兩條垂線與兩坐標軸所圍成矩形的面積為定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有下列函數(shù):①y=;②y=x-1;③y=-3x+1;④y=;⑤y=- (x>0);⑥y= (x<0).其中y隨x的增大而減小的是______(填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y=-x與函數(shù)y=-的圖象相交于A,B兩點,過A,B兩點分別作y軸的垂線,垂足分別為點C,D,求四邊形ACBD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(8分)如圖,在平面直角坐標系中,菱形ABCD的頂點C與原點O重合,點B在y軸的正半軸上,點A在函數(shù)y=(k>0,x>0)的圖象上,點D的坐標為(4,3).
(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當菱形的頂點D落在函數(shù)y=(k>0,x>0)的圖象上時,求菱形ABCD沿x軸正方向平移的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點A(4,2),與y軸的負半軸交于點B,且OB=6.
(1)求函數(shù)y=和y=kx+b的解析式;
(2)已知直線AB與x軸相交于點C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點P,使得S△POC=9.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c圖象對稱軸是直線x=1,則下列結論:
①a<0,b<0,
②2a﹣b>0,
③a+b+c>0,
④a﹣b+c<0,
⑤當x>1時,y隨x的增大而減小,
其中正確的是( )
A.①②③
B.②③④
C.③④⑤
D.①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com