【題目】同學們知道:“在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的銳角等于30°.”
(1)請寫出它的逆命題 ;該逆命題是一個 命題(填“真”或“假”)
(2)若你的判斷是真命題請寫出證明過程(要求畫圖,并寫出已知,求證).若是假命題,請說明理由.
【答案】(1)在直角三角形中,如果一個銳角等于30度,那么它所對的直角邊等于斜邊的一半,真;(2)已知,在Rt△ABC中,∠A=30°,∠ACB=90°.求證:BC=AB.
【解析】
(1)寫出逆命題,并判斷是真命題;
(2)首先寫出已知、求證,畫出圖形,借助等邊三角形的判定和性質證明或借助三角形的外接圓證明.
解:(1)原命題的逆命題為:在直角三角形中,如果一個銳角等于30度,那么它所對的直角邊等于斜邊的一半,該逆命題是一個真命題;
(2)已知,在Rt△ABC中,∠A=30°,∠ACB=90°.
求證:BC=AB.
證明:
證法一:如圖1所示,延長BC到D,使CD=BC,連接AD,易證AD=AB,∠BAD=60°.
∴△ABD為等邊三角形,
∴AB=BD,
∴BC=CD=AB,即BC=AB.
證法二:如圖2所示,取AB的中點D,
連接DC,有CD=AB=AD=DB,
∴∠DCA=∠A=30°,∠BDC=∠DCA+∠A=60°.
∴△DBC為等邊三角形,
∴BC=DB=AB,即BC=AB.
證法三:如圖3所示,在AB上取一點D,使BD=BC,
∵∠B=60°,
∴△BDC為等邊三角形,
∴∠DCB=60°,∠ACD=90°﹣∠DCB=90°﹣60°=30°=∠A.
∴DC=DA,即有BC=BD=DA=AB,
∴BC=AB.
證法四:如圖3所示,作△ABC的外接圓⊙D,∠C=90°,AB為⊙O的直徑,
連DC,有DB=DC,∠BDC=2∠A=2×30°=60°,
∴△DBC為等邊三角形,
∴BC=DB=DA=AB,即BC=AB.
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b的圖象與反比例函數 的圖象交于A(﹣2,1),B(1,n)兩點.
(1)試確定上述反比例函數和一次函數的表達式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,將兩塊直角三角尺的直角頂點C疊放在一起,若∠DCE=35°,則∠ACB=_____;若∠ACB=140°,則∠DCE=_______;
(2)猜想∠ACB與∠DCE的大小有何特殊關系,并說明理由;
(3)如圖2,若是兩個同樣的直角三角尺60°銳角的頂點A重合在一起,則∠DAB與∠CAE的大小又有何關系,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD中,點E在CB的延長線上,連接ED交AB于點F,AF=x(0.2≤x≤0.8),EC=y.則在下面函數圖象中,大致能反映y與x之間函數關系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為m,寬為n)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長和是( 。
A. 4nB. 4mC. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】直線y=kx+b與反比例函數y= (x<0)的圖象交于點A(﹣1,m),與x軸交于點B(1,0)
(1)求m的值;
(2)求直線AB的解析式;
(3)若直線x=t(t>1)與直線y=kx+b交于點M,與x軸交于點N,連接AN,S△AMN= ,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,現有5張寫著不同數字的卡片,請按要求完成下列問題:
若從中取出2張卡片,使這2張卡片上數字的乘積最大,則乘積的最大值是______.
若從中取出2張卡片,使這2張卡片上數字相除的商最小,則商的最小值是______.
若從中取出4張卡片,請運用所學的計算方法,寫出兩個不同的運算式,使四個數字的計算結果為24.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com