【題目】如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)y2= 的圖象交與A(1,M),B(n,﹣1)兩點(diǎn),過點(diǎn)A作AC⊥x軸于點(diǎn)C,過點(diǎn)B作BD⊥x軸于點(diǎn)D,連接AO,BO.得出以下結(jié)論:
①點(diǎn)A和點(diǎn)B關(guān)于直線y=﹣x對稱;
②當(dāng)x<1時,y2>y1
③SAOC=SBOD;
④當(dāng)x>0時,y1 , y2都隨x的增大而增大.
其中正確的是( )

A.①②③
B.②③
C.①③
D.①②③④

【答案】C
【解析】解:把A(1,M),B(n,﹣1)兩點(diǎn)代入y1=x+1得m=2,n=﹣2,
則A點(diǎn)坐標(biāo)為(1,2),B(﹣2,﹣1),
所以點(diǎn)A和點(diǎn)B關(guān)于直線y=﹣x對稱,所以①正確;
當(dāng)x<﹣2或0<x<1時,y2>y1 , 所以②錯誤;
SAOC=SBOD , 所以③正確;
當(dāng)x>0時,y1都隨x的增大而增大;y2都隨x的增大而減小,所以④錯誤.
故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧 上取一點(diǎn)E,連接DE、BE,過點(diǎn)D作DF∥BE交⊙O于點(diǎn)F,連接BF、AF,且AF與DE相交于點(diǎn)G,求證:

(1)四邊形EBFD是矩形;
(2)DG=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在基地參加社會實(shí)踐話動中,帶隊(duì)老師考問學(xué)生:基地計(jì)劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留一個寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的面積最大?下面是兩位學(xué)生爭議的情境:

請根據(jù)上面的信息,解決問題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長;
(2)請你判斷誰的說法正確,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從長度分別為2、3、6、7、9的5條線段中任取3條作為三角形的邊,能組成三角形的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在 中,以 為直徑的⊙O,交 于點(diǎn) ,且 ,交線段 的延長線于點(diǎn) ,連接 ,過點(diǎn) 于點(diǎn)

(Ⅰ)求證: ;
(Ⅱ)在 的內(nèi)部作 ,使 , 分別交于 于點(diǎn) 、 ,交⊙O于點(diǎn) ,若 ,求 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,Rt△ABC,∠ACB=90°,BC=6,AC=8,O為BC延長線上一點(diǎn),CO=3,過O,A作直線l,將l繞點(diǎn)O逆時針旋轉(zhuǎn),l與AB交于點(diǎn)D,與AC交于點(diǎn)E,當(dāng)l與OB重合時,停止旋轉(zhuǎn);過D作DM⊥AE于M,設(shè)AD=x,SADE=S.

(1)用含x的代數(shù)式表示DM,AM的長;
(2)當(dāng)直線l過AC中點(diǎn)時,求x的值;
(3)用含x的代數(shù)式表示AE的長;
(4)求S與x之間的函數(shù)關(guān)系式;
(5)當(dāng)x為多少時,DO⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,拋物線l1:y=ax2﹣4ax+5+4a(a<0)的頂點(diǎn)為A,直線l2:y=kx+3過點(diǎn)A,直線l2與拋物線l1及y軸分別交于B,C.

(1)求k的值;
(2)若B為AC的中點(diǎn),求a的值;
(3)在(2)的條件下,直接寫出不等式ax2﹣4ax+5+4a<kx+3的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正七邊形ABCDEFG,請僅用無刻度的直尺,分別按下列要求畫圖.
(1)在圖1中,畫出一個以AB為邊的平行四邊形;
(2)在圖2中,畫出一個以AF為邊的菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知雙曲線y= (k>0)與直線y=k′x交于A、B兩點(diǎn),點(diǎn)A在第一象限,試回答下列問題:

(1)若點(diǎn)A的坐標(biāo)為(3,1),則點(diǎn)B的坐標(biāo)為;當(dāng)x滿足:時, ≤k′x;
(2)如圖2,過原點(diǎn)O作另一條直線l,交雙曲線y= (k>0)于P,Q兩點(diǎn),點(diǎn)P在第一象限.

四邊形APBQ一定是
(3)若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P的橫坐標(biāo)為1,求四邊形APBQ的面積.
(4)設(shè)點(diǎn)A,P的橫坐標(biāo)分別為m,n,四邊形APBQ可能是矩形嗎?可能是正方形嗎?若可能,直接寫出m,n應(yīng)滿足的條件;若不可能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案