【題目】如圖,四邊形ABCD為菱形,∠D=60°,AB=4,E為邊BC上的動點(diǎn),連接AE,作AE的垂直平分線GF交直線CD于F點(diǎn),垂足為點(diǎn)G,則線段GF的最小值為____________.
【答案】3
【解析】
作輔助線,構(gòu)建三角形全等,證明Rt△AFM≌Rt△EFN(HL),得∠AFM=∠EFN,再證明△AEF是等邊三角形,計算FG=AG=AE,確認(rèn)當(dāng)AE⊥BC時,即AE=2時,FG最。
解:連接AC,過點(diǎn)F作FM⊥AC于,作FN⊥BC于N,連接AF、EF,
∵四邊形ABCD是菱形,且∠D=60°,
∴∠B=∠D=60°,AD∥BC,
∴∠FCN=∠D=60°=∠FCM,
∴FM=FN,
∵FG垂直平分AE,
∴AF=EF,
∴Rt△AFM≌Rt△EFN(HL),
∴∠AFM=∠EFN,
∴∠AFE=∠MFN,
∵∠FMC=∠FNC=90°,∠MCN=120°,
∴∠MFN=60°,
∴∠AFE=60°,
∴△AEF是等邊三角形,
∴FG=AG=AE,
∴當(dāng)AE⊥BC時,Rt△ABE中,∠B=60°,
∴∠BAE=30°,
∵AB=4,
∴BE=2,AE=2,
∴當(dāng)AE⊥BC時,即AE=2時,FG最小,最小為3;
故答案為:3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B都在反比例函數(shù)y=(x>0)的圖像上,過點(diǎn)B作BC∥x軸交y軸于點(diǎn)C,連接AC并延長交x軸于點(diǎn)D,連接BD,DA=3DC,S△ABD=6.則k的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富校園文化,促進(jìn)學(xué)生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學(xué)開展“書法、武術(shù)、黃梅戲進(jìn)校園”活動。今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績評定為A,B,C,D,E五個等級,該校部分學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息,解答下列問題.
(1)求該校參加本次“黃梅戲”演唱比賽的學(xué)生人數(shù);
(2)求扇形統(tǒng)計圖B等級所對應(yīng)扇形的圓心角度數(shù);
(3)已知A等級的4名學(xué)生中有1名男生,3名女生,現(xiàn)從中任意選取2名學(xué)生作為全校訓(xùn)練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】武勝縣白坪—飛龍鄉(xiāng)村旅游度假村橙海陽光景點(diǎn)組織輛汽車裝運(yùn)完三種臍橙共噸到外地銷售.按計劃,輛汽車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種臍橙,且必須裝滿.根據(jù)下表提供的信息,解答以下問題:
臍橙品種 | |||
每輛汽車運(yùn)載量(噸) | |||
每噸臍橙獲得(元) |
設(shè)裝運(yùn)種臍橙的車輛數(shù)為,裝運(yùn)種臍橙的車輛數(shù)為,求與之間的函數(shù)關(guān)系式;
如果裝運(yùn)每種臍橙的車輛數(shù)都不少于輛,那么車輛的安排方案有幾種?
設(shè)銷售利潤為(元),求與之間的函數(shù)關(guān)系式;若要使此次銷售獲利最大,應(yīng)采用哪種安排方案?并求出最大利潤的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:已知Rt△ABC的周長為30,斜邊長c=13,求△ABC的面積.、
解法展示:設(shè)Rt△ABC的兩直角邊長分別為a,b,則a+b+c=①______,
因?yàn)?/span>c=13,所以a+b=②______,
所以(a+b)2=③______,所以a2+ b2+④_____=289.
因?yàn)?/span>a2+b2=c2,所以c2+2ab=289,
所以⑤______+2ab=289,所以ab=⑥______(第1步),
所以△ABC的面積=ab=×⑦______=⑧______(第2步).
合作探究:(1)對解法展示進(jìn)行填空.
(2)上述解題過程中,由第1步到第2步體現(xiàn)出來的數(shù)學(xué)思想是______(填序號).
①整體思想;②數(shù)形結(jié)合思想;③分類討論思想.
方法遷移:
(3)已知一直角三角形的面積為24,斜邊長為10,求這個直角三角形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)快、慢兩車分別從相距360千米路程的甲、乙兩地同時出發(fā),勻速行駛,先相向而行,快車到達(dá)乙地后,停留1小時,然后按原路原速返回,快車比慢車晚1小時到達(dá)甲地,快、慢兩車距各自出發(fā)地的路程y(千米)與出發(fā)后所用的時間x(小時)的關(guān)系如圖.
請結(jié)合圖象信息解答下列問題:
(1)慢車的速度是 千米/小時,快車的速度是 千米/小時;
(2)求m的值,并指出點(diǎn)C的實(shí)際意義是什么?
(3)在快車按原路原速返回的過程中,快、慢兩車相距的路程為150千米時,慢車行駛了多少小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,于點(diǎn),于點(diǎn),平分交于點(diǎn),點(diǎn)為線段延長線上一點(diǎn),.則下列結(jié)論:①;②;③;④若,則,正確的有:________.(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=BC,以BC為直徑的⊙O與AC相交于點(diǎn)D,過點(diǎn)D作DE⊥AB交CB延長線于點(diǎn)E,垂足為點(diǎn)F.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑R=5,tanC=,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com