將編號為1,2,3,4,5的五個小球放入編號為1,2,3,4,5
的五個盒子中,每個盒子只放入一個,
① 一共有多少種不同的放法?
② 若編號為1的球恰好放在了1號盒子中,共有多少種不同的放法?
③ 若至少有一個球放入了同號的盒子中(即對號放入),共有多少種不同的放法?
① 將第一個球先放入,有5種不同的的方法,再放第二個球,這時以4種不同的放法,依此類推,放入第三、四、五個球,分別有3、2、1種放法,所以總共有5×4×3×2×1=120種不同的放法。
② 將1號球放在1號盒子中,其余的四個球隨意放,它們依次有4、3、2、1種不同的放法,這樣共有4×3×2×1=24種不同的放法。
③ (解法一)
在這120種放法中,排除掉全部不對號的放法,剩下的就是至少有一個球放入了同號的盒子中的放法種數(shù)。
為研究全部不對號的放法種數(shù)的計算法,設(shè)A1為只有一個球放入一個盒子,且不對號的放法種數(shù),顯然A1=0,A2為只有二個球放入二個盒子,且不對號的放法種數(shù),∴ A2=1,A3為只有三個球放入三個盒子,且都不對號的放法種數(shù),A3=2,……,A n為有n個球放入n個盒子,且都不對號的放法種數(shù)。
下面我們研究A n+1的計算方法,考慮它與A n及A n-1的關(guān)系,
如果現(xiàn)在有 n個球已經(jīng)按全部不對號的方法放好,種數(shù)為A n。取其中的任意一種,將第n+1個球和第n+1個盒子拿來,將前面n個盒子中的任一盒子(如第m個盒子)中的球(肯定不是編號為m的球)放入第n+1個盒子,將第n+1個球放入剛才空出來的盒子,這樣的放法都是合理的。共有n A n種不同的放法。
但是,在剛才的操作中,忽略了編號為m的球放入第n+1個盒子中的情況,即還有這樣一種情況,編號為m的球放入第n+1個盒子中,且編號為n+1的球放入第m個盒子中,其余的n-1個球也都不對號。于是又有了nA n-1種情況是合理的。
綜上所述得A n+1=nA n+nA n-1=n(A n+A n-1).
由A1=0, A2=1, 得A3=2(1+0)=2, A4=3(2+1)=9, A5=4(9+2)=44.
所以至少有一個球放入了同號的盒子中的放法種數(shù)為全部放法的種數(shù)減去五個球都不對號的放法種數(shù),即120-44=76種。
(解法二)
從五個球中選定一個球,有5種選法,將它放入同號的盒子中 (如將1號球放入1號盒子),其余的四個球隨意放,有24種放法,這樣共有5×24=120種放法。
但這些放法中有許多種放法是重復(fù)的,如將兩個球放入同號的盒子中(例如1號球和2號球分別放入1號盒子、2號盒子中)的放法就計算了兩次,這樣從總數(shù)中應(yīng)減去兩個球放入同號的盒子中的情況,得120-=120-60(種)。
很明顯,這樣的計算中,又使得將三個球放入同號的盒子中(例如1號球、2號球和3號球分別放入1號盒子、2號盒子和3號盒子中)的放法少計算了一次,于是前面的式子中又要加入=20種,
再計算四個球、五個球放入同號盒子的情況,于是再減去四個球放入同號盒子中的情況,最后加上五個球放入同號中的情況。
整個式子為120-+-+=120-60+20-5+1=76(種)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com