【題目】如圖,小明同學(xué)將五個(gè)正方形按圖1所示位置擺放后發(fā)現(xiàn)中間空白處是邊長(zhǎng)為3的小正方形,根據(jù)這個(gè)信息,小明設(shè)右下角的最小的正方形邊長(zhǎng)為x

1)則右上角最大的正方形邊長(zhǎng)為   

2)求拼成的大長(zhǎng)方形的長(zhǎng)和寬分別為多少?

3)小明又將四個(gè)長(zhǎng)為a,寬為b的小長(zhǎng)方形放到圖2中的長(zhǎng)方形中,得到如圖2所示的圖形,則圖形Ⅰ和圖形Ⅱ的周長(zhǎng)之和是   

【答案】1)(x+9);(2)長(zhǎng)為39,寬為33;(34n

【解析】

1)最右下角的小正方形與它左邊的小正方形邊長(zhǎng)同為x,從下方中間的小正方形開(kāi)始順時(shí)針數(shù)過(guò)去,每一個(gè)都比前一個(gè)邊長(zhǎng)大3

2)用不同方法表示ADEG,列方程求出x,即可求出大長(zhǎng)方形的長(zhǎng)和寬.

3)用m、n表示圖形Ⅰ和圖形Ⅱ的長(zhǎng)寬,然后計(jì)算即可.

解:(1)如圖1,∵ABBCx,

CDx+3,

EFx+3+3x+6

FGx+6+3x+9

故答案為:(x+9);

2)由(1)得:ADx+x+x+33x+3EGx+6+x+92x+15,

ADEG

3x+32x+15

解得:x12,

AD3x+339,DEx+3+x+62x+933

∴長(zhǎng)方形長(zhǎng)為39,寬為33;

3)如圖,ABn2b,BCa,DEna,EF2b,

C2AB+BC+2DE+EF)=2n2b+a+2na+2b)=4n.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,、是弧(異于)上兩點(diǎn),是弧上一動(dòng)點(diǎn),的角平分線交于點(diǎn),的平分線交于點(diǎn).當(dāng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),則、兩點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)的比是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將正方形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上,其余各邊均與坐標(biāo)軸平行,直線lyx3沿x軸的負(fù)方向以每秒1個(gè)單位的速度平移,在平移的過(guò)程中,該直線被正方形ABCD的邊所截得的線段長(zhǎng)為m,平移的時(shí)間為t(秒),mt的函數(shù)圖象如圖2所示,則圖2b的值為(

A. 5B. 4C. 3D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)定義運(yùn)算對(duì)于任意有理數(shù)a、b,都有ababb,232×33,請(qǐng)根據(jù)以上定義解答下列各題

1 2(-3)=___________x(-2)=___________;

2 化簡(jiǎn)[(-x3] (-2);

3 x 3(-x),x的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上有、兩個(gè)點(diǎn)對(duì)應(yīng)的數(shù)分別是、,且滿足

1)求、的值;

2)點(diǎn)是數(shù)軸上、之間的一個(gè)點(diǎn),使得,求出點(diǎn)所對(duì)應(yīng)的數(shù);

3)點(diǎn),點(diǎn)為數(shù)軸上的兩個(gè)動(dòng)點(diǎn),點(diǎn)點(diǎn)以3個(gè)單位長(zhǎng)度每秒的速度向右運(yùn)動(dòng),點(diǎn)同時(shí)從點(diǎn)以2個(gè)單位長(zhǎng)度每秒的速度向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,若,求時(shí)間的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)為1,寬為a的矩形紙片(),如圖那樣折一下,剪下一個(gè)邊長(zhǎng)等于矩形寬度的正方形(稱為第一次操作);再把剩下的矩形如圖那樣折一下,剪下一個(gè)邊長(zhǎng)等于此時(shí)矩形寬度的正方形(稱為第二次操作);如此反復(fù)操作下去.若在第n此操作后,剩下的矩形為正方形,則操作終止.當(dāng)n=3時(shí),a的值為( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,邊長(zhǎng)為4,對(duì)角線AC、BD交于點(diǎn)O,點(diǎn)EBC邊上任意一點(diǎn),分別向BD、AC作垂線,垂足分別為F、G,則四邊形OFEG的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,,過(guò)點(diǎn)、作相距為2的平行線段,分別交,于點(diǎn),,則的長(zhǎng)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案