如圖1,在平面直角坐標系中,A(a,0),B(b,0),C(-1,2),且

(1)求a,b的值;

(2)①在x軸的正半軸上存在一點M,使△COM的面積=△ABC的面積,求出點M的坐標;

②在坐標軸的其它位置是否存在點M,使△COM的面積=△ABC的面積仍然成立,若存在,請直接寫出符合條件的點M的坐標;

(3)如圖2,過點C作CD⊥y軸交y軸于點D,點P為線段CD延長線上一動點,連接OP,OE平分∠AOP,OF⊥OE.當點P運動時,的值是否會改變?若不變,求其值;若改變,說明理由.

 

【答案】

(1)a=-2,b=3.(2)M.(3)不變

【解析】

試題分析:解:(1)∵,

又∵,

 .

     ∴   

.        

(2)①過點C做CT⊥x軸,CS⊥y軸,垂足分別為T、S.

∵A(﹣2,0),B(3,0),∴AB=5,因為C(﹣1,2),∴CT=2,CS=1,

△ABC的面積=AB·CT=5,要使△COM的面積=△ABC的面積,即△COM的面積=,所以OM·CS=,∴OM=5.所以M的坐標為(0,5).

②存在.點M的坐標為. 

(3)的值不變,理由如下:

∵CD⊥y軸,AB⊥y軸    ∴∠CDO=∠DOB=90°

∴AB∥AD  ∴∠OPD=∠POB

∵OF⊥OE  ∴∠POF+∠POE=90°,∠BOF+∠AOE=90°

∵OE平分∠AOP   ∴∠POE=∠AOE ∴∠POF=∠BOF

∴∠OPD=∠POB=2∠BOF 

∵∠DOE+∠DOF=∠BOF+∠DOF=90° ∴∠DOE=∠BOF

∴∠OPD =2∠BOF=2∠DOE

考點:絕對值的定義,平面直角坐標系及坐標點的定義。

點評:考查上述定義,要熟練掌握,由題意求得。本題有三問,計算較多,易出錯,屬于偏難題,由一定的難度。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應(yīng)各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級第一學(xué)期期中測評數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.

如圖2,當點、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.

(1)請在圖2中畫出點, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習(xí)冊答案