【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的邊長為3,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A、C分別在x軸、y軸上,點(diǎn)B在第一象限內(nèi)直線y=kx+1分別與x軸、y軸、線段BC交于點(diǎn)F、D、G,AE⊥FG,下列結(jié)論:①△GCD和△FOD的面積比為3:1:②AE的最大長度為:③tan∠FEO=④當(dāng)DA平分∠EAO時(shí),CG=,其中正確的結(jié)論有(

A. ①②③ B. ②③ C. ②③④ D. ③④

【答案】C

【解析】分析:令x=0,得y=1,得OD=1,由OD=1得CD=2,易證△GCD∽△FOD,從而可得△GCD和△FOD的面積比為4:1,故①錯(cuò)誤;由勾股定理和三角形三邊關(guān)系可得AE的最大長度為,故②正確;由OD⊥OA,AE⊥DE得A、O、D、E四點(diǎn)共圓,由∠FEO+∠OEA=90°,∠ODA+∠OAD=90°,∠OEA=∠ODA得∠FEO=∠ODA故tan∠FEO=tan∠ODA=,故③正確;當(dāng)DA平分∠OAE時(shí),OE=OD=1,設(shè)OF=a,延長AE至點(diǎn)H,則OH=DF=Rt△HOA中,HO=1+,OA=3,HA=3+a,HO2+OA2=HA2 解得a=,故CG=2a=,所以④正確.

詳解:令x=0,得y=1,得OD=1,由OD=1得CD=2,易證△GCD∽△FOD,

∴SGCD:SFOD=4:1,故①錯(cuò)誤;

Rt△AOE中,AD>AE,所以AE的最大值為AD的長,AD=,故②正確;

∵OD⊥OA,AE⊥DE

∴A、O、D、E四點(diǎn)共圓,

∵∠FEO+∠OEA=90°,∠ODA+∠OAD=90°,∠OEA=∠ODA(同弧所對(duì)的圓周角相等)

∴∠FEO=∠ODA

∴tan∠FEO=tan∠ODA=,故③正確;

當(dāng)DA平分∠OAE時(shí),OE=OD=1

設(shè)OF=a,延長AE至點(diǎn)H,則OH=DF=

Rt△HOA中,HO=1+,OA=3,HA=3+a

HO2+OA2=HA2 解得a=

∴CG=2a=,故④正確.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+cAB,C三點(diǎn),點(diǎn)A的坐標(biāo)是3,0,點(diǎn)C的坐標(biāo)是0,-3,動(dòng)點(diǎn)P在拋物線上.

1b =_________,c =_________,點(diǎn)B的坐標(biāo)為_____________;(直接填寫結(jié)果)

(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;

(3)過動(dòng)點(diǎn)PPE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)Dx軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖表示的是用火柴棒搭成的一個(gè)個(gè)圖形,第1個(gè)圖形用了5根火柴,第2個(gè)圖形用了8根火柴,,照此規(guī)律,用288根火柴搭成的圖形是( ).

A. 80個(gè)圖形B. 82個(gè)圖形

C. 72個(gè)圖形D. 95個(gè)圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某小區(qū)開展了“節(jié)約用水為環(huán)保做貢獻(xiàn)”的活動(dòng),為了解居民用水情況,在小區(qū)隨機(jī)抽查了10戶家庭的月用水量,結(jié)果如下表

月用水量(噸)

8

9

10

戶數(shù)

2

6

2

則關(guān)于這10戶家庭的月用水量,下列說法錯(cuò)誤的是 ( )

A. 方差是4 B. 極差2 C. 平均數(shù)是9 D. 眾數(shù)是9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為,點(diǎn)B坐標(biāo)為滿足.

1)若沒有平方根,判斷點(diǎn)A在第幾象限并說明理由;

2)若點(diǎn)A軸的距離是點(diǎn)B軸距離的3倍,求點(diǎn)B的坐標(biāo);

3)點(diǎn)D的坐標(biāo)為(4,-2),OAB的面積是DAB面積的2倍,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】深圳市某校藝術(shù)節(jié)期間,開展了“好聲音”歌唱比賽,在初賽中,學(xué)生處對(duì)初賽成績做了統(tǒng)計(jì)分析,繪制成如下頻數(shù)、頻率分布直方圖(如圖),請你根據(jù)圖表提供的信息,解答下列問題:

(1)頻數(shù)、頻率分布表中a=_______,b=_______;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)初賽成績在94.5≤x<100.5分的四位同學(xué)恰好是七年級(jí)、八年級(jí)各一位,九年級(jí)兩位,學(xué)生處打算從中隨機(jī)挑選兩位同學(xué)談一下決賽前的訓(xùn)練,則所選兩位同學(xué)恰好都是九年級(jí)學(xué)生的概率為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)與反比例函數(shù)的圖象分別交于A、C兩點(diǎn),已知點(diǎn)B與點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱,且點(diǎn)B的坐標(biāo)為其中

四邊形ABCD的是______填寫四邊形ABCD的形狀

當(dāng)點(diǎn)A的坐標(biāo)為時(shí),四邊形ABCD是矩形,求m,n的值.

試探究:隨著km的變化,四邊形ABCD能不能成為菱形?若能,請直接寫出k的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某段河流的兩岸是平行的,數(shù)學(xué)興趣小組在老師帶領(lǐng)下不用涉水過河就測得河的寬度,他們是這樣做的:

①在河流的一側(cè)岸邊B點(diǎn),選對(duì)岸正對(duì)的一棵樹A;

②沿河岸直走20米有一樹C,繼續(xù)前行20米到達(dá)D處;

③從D處沿與河岸垂直的方向行走,當(dāng)?shù)竭_(dá)A樹正好被C樹遮擋住的E處停止行走;

④測得DE的長為5米.

求河流的寬度是多少?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,矩形OABC的頂點(diǎn)B坐標(biāo)為(12,5),點(diǎn)D CB邊上從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B,以AD為邊作正方形ADEF,連BE、BF,在點(diǎn)D運(yùn)動(dòng)過程中,請?zhí)骄恳韵聠栴}:

(1)ABF的面積是否改變,如果不變,求出該定值;如果改變,請說明理由;

(2)BEF為等腰三角形,求此時(shí)正方形ADEF的邊長;

(3)設(shè)E(x,y),直接寫出y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案