分析:分兩種情況考慮:(i)如圖1所示,由AB=AC,OB=OC,利用線段垂直平分線逆定理得到AO垂直平分BC,在直角三角形ABD中,由AB及cos∠ABC的值,利用銳角三角函數定義求出BD的長,再利用勾股定理求出AD的長,在直角三角形OBD中,由OB與BD的長,利用勾股定理求出OD的長,由AD+DO即可求出AO的長;(ii)同理由AD-OD即可求出AO的長,綜上,得到所有滿足題意的AO的長.
解答:解:分兩種情況考慮:
(i)如圖1所示,
∵AB=AC,OB=OC,
∴AO垂直平分BC,
∴OA⊥BC,D為BC的中點,
在Rt△ABD中,AB=5,cos∠ABC=
,
∴BD=3,
根據勾股定理得:AD=
=4,
在Rt△BDO中,OB=
,BD=3,
根據勾股定理得:OD=
=1,
則AO=AD+OD=4+1=5;
(ii)如圖2所示,
∵AB=AC,OB=OC,
∴AO垂直平分BC,
∴OD⊥BC,D為BC的中點,
在Rt△ABD中,AB=5,cos∠ABC=
,
∴BD=3,
根據勾股定理得:AD=
=4,
在Rt△BDO中,OB=
,BD=3,
根據勾股定理得:OD=
=1,
則OA=AD-OD=4-1=3,
綜上,OA的長為3或5.
故答案為:3或5
點評:此題考查了垂徑定理,勾股定理,等腰三角形的性質,以及直角三角形的性質,熟練掌握定理及性質是解本題的關鍵.