【題目】如圖,已知△ABC,直線(xiàn)PQ垂直平分AC,與邊AB交于E,連接CE,過(guò)點(diǎn)C作CF平行于BA交PQ于點(diǎn)F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若AD=3,AE=5,則菱形AECF的面積是多少?
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)24
【解析】試題分析:(1)由作圖知:PQ為線(xiàn)段AC的垂直平分線(xiàn),得到AE=CE,AD=CD,由CF∥AB,得到∠EAC=∠FCA,∠CFD=∠AED,利用ASA證得△AED≌△CFD;
(2)由△AED≌△CFD,得到AE=CF,由EF為線(xiàn)段AC的垂直平分線(xiàn),得到EC=EA,FC=FA,從而有EC=EA=FC=FA,利用四邊相等的四邊形是菱形判定四邊形AECF為菱形;
(3)在Rt△ADE中,由勾股定理得到ED=4,故EF=8,AC=6,從而得到菱形AECF的面積.
試題解析:(1)由作圖知:PQ為線(xiàn)段AC的垂直平分線(xiàn),∴AE=CE,AD=CD,∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED,在△AED與△CFD中,∵∠EAC=∠FCA,AD=CD,∠CFD=∠AED,∴△AED≌△CFD;
(2)∵△AED≌△CFD,∴AE=CF,∵EF為線(xiàn)段AC的垂直平分線(xiàn),∴EC=EA,FC=FA,∴EC=EA=FC=FA,∴四邊形AECF為菱形;
(3)在Rt△ADE中,∵AD=3,AE=5,∴ED=4,∴EF=8,AC=6,∴S菱形AECF=8×6÷2=24,∴菱形AECF的面積是24.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一艘載重480 t的船,容積是1 050 m3,現(xiàn)有甲種貨物450 m3,乙種貨物350 t,而甲種貨物每噸的體積為2.5 m3,乙種貨物每立方米0.5 t.問(wèn):(1)甲、乙兩種貨物是否都能裝上船?如果不能,請(qǐng)說(shuō)明理由.
(2)為了最大限度地利用船的載質(zhì)量和容積,兩種貨物應(yīng)各裝多少?lài)崳?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形ABCD中,P是CD的中點(diǎn),連接AP并延長(zhǎng),交BC的延長(zhǎng)線(xiàn)于點(diǎn)F,作△CPF的外接圓⊙O,連接BP并延長(zhǎng)交⊙O于點(diǎn)E,連接EF,則EF的長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年5月,從全國(guó)旅游景區(qū)質(zhì)量等級(jí)評(píng)審會(huì)上傳來(lái)喜訊,我市“風(fēng)岡茶海之心”、“赤水佛光巖”、“仁懷中國(guó)酒文化城”三個(gè)景區(qū)加入國(guó)家“4A”級(jí)景區(qū).至此,全市“4A”級(jí)景區(qū)已達(dá)13個(gè).某旅游公司為了了解我市“4A”級(jí)景區(qū)的知名度情況,特對(duì)部分市民進(jìn)行現(xiàn)場(chǎng)采訪(fǎng),根據(jù)市民對(duì)13個(gè)景區(qū)名字的回答情況,按答數(shù)多少分為熟悉(A),基本了解(B)、略有知曉(C)、知之甚少(D)四類(lèi)進(jìn)行統(tǒng)計(jì),繪制了一下兩幅統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中信息解答以下各題:
(1)本次調(diào)查活動(dòng)的樣本容量是;
(2)調(diào)查中屬于“基本了解”的市民有人;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)“略有知曉”類(lèi)占扇形統(tǒng)計(jì)圖的圓心角是多少度?“知之甚少”類(lèi)市民占被調(diào)查人數(shù)的百分比是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OE是∠AOC的角平分線(xiàn),OD是∠BOC的角平分線(xiàn).
(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度數(shù);
(2)若∠AOB=90°,∠BOC=α,求∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線(xiàn),E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線(xiàn)于F,連接CF.試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解下面內(nèi)容,并解決問(wèn)題:
善于思考的小明在學(xué)習(xí)《實(shí)數(shù)》一章后,自己探究出了下面的兩個(gè)結(jié)論:
①,,和都是9×4的算術(shù)平方根,
而9×4的算術(shù)平方根只有一個(gè),所以=.
②,,和都是9×16的算術(shù)平方根,
而9×16的算術(shù)平方根只有一個(gè),所以 .
請(qǐng)解決以下問(wèn)題:
(1)請(qǐng)仿照①幫助小明完成②的填空,并猜想:一般地,當(dāng)a≥0,b≥0時(shí),與、之間的大小關(guān)系是怎樣的?
(2)再舉一個(gè)例子,檢驗(yàn)?zāi)悴孪氲慕Y(jié)果是否正確.
(3)運(yùn)用以上結(jié)論,計(jì)算:的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圖1、圖2、圖3分別表示甲、乙、丙三人由A地到B地的路線(xiàn)圖(箭頭表示行進(jìn)的方向).其中E為AB的中點(diǎn),AH>HB,判斷三人行進(jìn)路線(xiàn)長(zhǎng)度的大小關(guān)系為( )
A.甲<乙<丙 B.乙<丙<甲
C.丙<乙<甲 D.甲=乙=丙
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用簡(jiǎn)便方法計(jì)算:
(1)(-3)+(+8)-(-5);
(2)(-)+(+)+(+)+(-1);
(3)(-3)-(-)+(-0.5)+3;
(4)(+3)+(-2)-(-5)-(+);
(5)(-0.25)+(-3)-|-1|-(-3);
(6)(+)+(+17)+(-1)-(+7)-(-2)+(-).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com