【題目】如圖,在平面直角坐標(biāo)系xOy中,以點(diǎn)O為圓心的圓分別交x軸的正半軸于點(diǎn)M,交y軸的正半軸于點(diǎn)N.劣弧 的長(zhǎng)為 π,直線y=﹣ x+4與x軸、y軸分別交于點(diǎn)A、B.

(1)求證:直線AB與⊙O相切;
(2)求圖中所示的陰影部分的面積(結(jié)果用π表示)

【答案】
(1)

證明:作OD⊥AB于D,如圖所示:∵劣弧 的長(zhǎng)為 π,

= ,

解得:OM=

即⊙O的半徑為 ,

∵直線y=﹣ x+4與x軸、y軸分別交于點(diǎn)A、B,

當(dāng)y=0時(shí),x=3;當(dāng)x=0時(shí),y=4,

∴A(3,0),B(0,4),

∴OA=3,OB=4,

∴AB= =5,

∵△AOB的面積= ABOD= OAOB,

∴OD= = =半徑OM,

∴直線AB與⊙O相切;


(2)

解:圖中所示的陰影部分的面積=△AOB的面積﹣扇形OMN的面積= ×3×4﹣ π×( 2=6﹣ π.


【解析】(1)作OD⊥AB于D,由弧長(zhǎng)公式和已知條件求出半徑OM= ,由直線解析式求出點(diǎn)A和B的坐標(biāo),得出OA=3,OB=4,由勾股定理求出AB=5,再由△AOB面積的計(jì)算方法求出OD,即可得出結(jié)論;(2)陰影部分的面積=△AOB的面積﹣扇形OMN的面積,即可得出結(jié)果.本題考查了切線的判定、弧長(zhǎng)公式、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、勾股定理、扇形面積的計(jì)算等知識(shí);熟練掌握切線的判定,由三角形的面積求出半徑是解決問題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y= x2﹣2x+1的圖象與一次函數(shù)y=kx+b(k≠0)的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B在第一象限內(nèi),點(diǎn)C是二次函數(shù)圖象的頂點(diǎn),點(diǎn)M是一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點(diǎn),過點(diǎn)B作軸的垂線,垂足為N,且SAMO:S四邊形AONB=1:48.

(1)求直線AB和直線BC的解析式;
(2)點(diǎn)P是線段AB上一點(diǎn),點(diǎn)D是線段BC上一點(diǎn),PD∥x軸,射線PD與拋物線交于點(diǎn)G,過點(diǎn)P作PE⊥x軸于點(diǎn)E,PF⊥BC于點(diǎn)F.當(dāng)PF與PE的乘積最大時(shí),在線段AB上找一點(diǎn)H(不與點(diǎn)A,點(diǎn)B重合),使GH+ BH的值最小,求點(diǎn)H的坐標(biāo)和GH+ BH的最小值;
(3)如圖2,直線AB上有一點(diǎn)K(3,4),將二次函數(shù)y= x2﹣2x+1沿直線BC平移,平移的距離是t(t≥0),平移后拋物線上點(diǎn)A,點(diǎn)C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,點(diǎn)C′;當(dāng)△A′C′K′是直角三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣6x+(2m+1)=0有實(shí)數(shù)根.
(1)求m的取值范圍;
(2)如果方程的兩個(gè)實(shí)數(shù)根為x1 , x2 , 且2x1x2+x1+x2≥20,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)完“利用三角函數(shù)測(cè)高”這節(jié)內(nèi)容之后,某興趣小組開展了測(cè)量學(xué)校旗桿高度的實(shí)踐活動(dòng),如圖,在測(cè)點(diǎn)A處安置測(cè)傾器,量出高度AB=1.5m,測(cè)得旗桿頂端D的仰角∠DBE=32°,量出測(cè)點(diǎn)A到旗桿底部C的水平距離AC=20m,根據(jù)測(cè)量數(shù)據(jù),求旗桿CD的高度.(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩組數(shù)據(jù)m,6,n與1,m,2n,7的平均數(shù)都是6,若將這兩組數(shù)據(jù)合并成一組數(shù)據(jù),則這組新數(shù)據(jù)的中位數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B、C是圓O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF等于( 。

A.12.5°
B.15°
C.20°
D.22.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△PAB中,PA=PB,M,N,K分別是PA,PB,AB上的點(diǎn),且AM=BK,BN=AK,若∠MKN=44°,則∠P的度數(shù)為( 。

A.44°
B.66°
C.88°
D.92°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,延長(zhǎng)CB至點(diǎn)F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點(diǎn)E,N,M,連接EO.

(1)已知BD= ,求正方形ABCD的邊長(zhǎng);
(2)猜想線段EM與CN的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),abc≠0)與直線l都經(jīng)過y軸上的一點(diǎn)P,且拋物線L的頂點(diǎn)Q在直線l上,則稱此直線l與該拋物線L具有“一帶一路”關(guān)系.此時(shí),直線l叫做拋物線L的“帶線”,拋物線L叫做直線l的“路線”.
(1)若直線y=mx+1與拋物線y=x2﹣2x+n具有“一帶一路”關(guān)系,求m,n的值;
(2)若某“路線”L的頂點(diǎn)在反比例函數(shù)y= 的圖象上,它的“帶線”l的解析式為y=2x﹣4,求此“路線”L的解析式;
(3)當(dāng)常數(shù)k滿足 ≤k≤2時(shí),求拋物線L:y=ax2+(3k2﹣2k+1)x+k的“帶線”l與x軸,y軸所圍成的三角形面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案