【題目】“三等分角”是數(shù)學(xué)史上一個(gè)著名的問題,但僅用尺規(guī)不可能“三等分角”.下面是數(shù)學(xué)家帕普斯借助函數(shù)給出的一種“三等分銳角”的方法(如圖):將給定的銳角∠AOB置于直角坐標(biāo)系中,邊OB在x軸上、邊OA與函數(shù)的圖象交于點(diǎn)P,以P為圓心、以2OP為半徑作弧交圖象于點(diǎn)R.分別過點(diǎn)P和R作x軸和y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠MOB,則∠MOB=∠AOB.要明白帕普斯的方法,請(qǐng)研究以下問題:
(1)設(shè)P(,)、R(,),求直線OM對(duì)應(yīng)的函數(shù)表達(dá)式(用含,的代數(shù)式表示);
(2)分別過點(diǎn)P和R作y軸和x軸的平行線,兩直線相交于點(diǎn)Q.請(qǐng)說明Q點(diǎn)在直線OM上,并據(jù)此證明∠MOB=∠AOB;
(3)應(yīng)用上述方法得到的結(jié)論,你如何三等分一個(gè)鈍角(用文字簡要說明)
【答案】(1). y=x;(2).證明見解析;(3).見解析.
【解析】
(1)根據(jù)點(diǎn)P、點(diǎn)R的坐標(biāo)得出點(diǎn)M的坐標(biāo),設(shè)出直線OM的解析式,將點(diǎn)M的坐標(biāo)代入直線解析式求出未知參數(shù)即可;(2)不難證明四邊形PQRM為矩形,根據(jù)矩形的性質(zhì)可得出∠PSQ=2∠PMS,PR=2PS,由已知條件PR=2PO可得PS=PO,即∠PSO=∠POS,所以∠POS=2∠PMS,由PM∥x軸可得∠PMS=∠MOB,所以∠POS=2∠MOB,即可證明∠MOB=∠AOB;(3)方法一:利用鈍角的一半是銳角,將利用上述結(jié)論將銳角三等分即可;方法二:鈍角減去一個(gè)直角得一個(gè)銳角,利用上述結(jié)論將銳角三等分后,再將直角三等分即可.
(1)設(shè)直線OM的解析式為y=kx,
∵P(a,),R(b,),
∴M(b,),
∴k=,
∴y=x;
(2)證明:由題意得Q(a,),
當(dāng)x=a時(shí),y=,
∴點(diǎn)Q在直線OM上,
由題意可得∠PMB=∠MRQ=∠RQP=90°,
∴四邊形PQRM是矩形,
∴PR=2PS,SP=SM,
∴∠SPM=∠SMP,
∴∠PSO=2∠SMP,
∵PM∥x軸,
∴∠SMP=∠MOB,
∴∠PSO=2∠MOB,
∵PR=2PO,
∴PS=PO,
∴∠PSO=∠POS,
∴∠POS=2∠MOB,
∴∠MOB=∠AOB;
(3)方法一:利用鈍角的一半是銳角,將利用上述結(jié)論將銳角三等分即可;
方法二:鈍角減去一個(gè)直角得一個(gè)銳角,利用上述結(jié)論將銳角三等分后,再將直角三等分即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明的爸爸開車帶著小明在公路上勻速行駛,小明每隔一段時(shí)間看到的里程碑上的數(shù)如下:
時(shí)刻 | 12:00 | 13:00 | 14:30 |
碑上的數(shù) | 是一個(gè)兩位數(shù),數(shù)字之和是6 | 是一個(gè)兩位數(shù),十位與個(gè)位數(shù)字與12:00時(shí)所看到的正好顛倒了 | 比12:00時(shí)看到的兩位數(shù)中間多了個(gè)0 |
則12:00時(shí)看到的兩位數(shù)是多少?設(shè)12:00時(shí)看到的兩位數(shù)的個(gè)位數(shù)為y,十位數(shù)為x,列出的二元一次方程組為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售某款童裝,每件售價(jià)60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價(jià)銷售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣30件.已知該款童裝每件成本價(jià)40元,設(shè)該款童裝每件售價(jià)x元,每星期的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)每件售價(jià)定為多少元時(shí),每星期的銷售利潤最大,最大利潤多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象交于A(a,-2),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)C,連接PO,若△POC的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校后勤人員到一家文具店給九年級(jí)的同學(xué)購買考試用文具包,文具店規(guī)定一次購買400個(gè)以上,可享受8折優(yōu)惠.若給九年級(jí)學(xué)生每人購買一個(gè),不能享受8折優(yōu)惠,需付款1936元;若多買88個(gè),就可享受8折優(yōu)惠,同樣只需付款1936元.請(qǐng)問該學(xué)校九年級(jí)學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點(diǎn)、同終點(diǎn)、同方向勻速跑步500m,先到終點(diǎn)
的人原地休息.已知甲先出發(fā)2s.在跑步過程中,甲、乙兩人的距離y(m)與乙出發(fā)的時(shí)間t(s)之間的關(guān)系
如圖所示,給出以下結(jié)論:①a=8;②b=92;③c=123.其中正確的是【 】
A.①②③ B.僅有①② C.僅有①③ D.僅有②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABN和△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2.
(1)求證:BD=CE;
(2)求證:∠M=∠N.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=BC,以BC為直徑的⊙O與AC相交于點(diǎn)D,過點(diǎn)D作DE⊥AB交CB延長線于點(diǎn)E,垂足為點(diǎn)F.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑R=5,tanC=,求EF的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com