【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.

【答案】(1)證明見解析;(2)四邊形ACEF是菱形,理由見解析.

【解析】試題(1)由三角形中位線定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四邊形ACEF是平行四邊形,即可得出AF=CE;

(2)由直角三角形的性質(zhì)得出∠BAC=60°,AC=AB=AE,證出△AEC是等邊三角形,得出AC=CE,即可得出結(jié)論.

試題解析:(1)∵點D,E分別是邊BC,AB上的中點,∴DE∥AC,AC=2DE,

∵EF=2DE,∴EF∥AC,EF=AC,∴四邊形ACEF是平行四邊形,∴AF=CE;

(2)當(dāng)∠B=30°時,四邊形ACEF是菱形;理由如下:

∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等邊三角形,∴AC=CE,

又∵四邊形ACEF是平行四邊形,∴四邊形ACEF是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)從A,B兩市場向甲、乙兩地運送水果,A,B兩個水果市場分別有水果3515噸,其中甲地需要水果20噸,乙地需要水果30噸,從A到甲地運費50/噸,到乙地30/噸;從B到甲地運費60/噸,到乙地45/

(1)設(shè)A市場向甲地運送水果x噸,請完成表:

運往甲地(單位:噸)

運往乙地(單位:噸)

A市場

x

   

B市場

   

   

(2)設(shè)總運費為W元,請寫出Wx的函數(shù)關(guān)系式,寫明x的取值范圍;

(3)怎樣調(diào)運水果才能使運費最少?運費最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是等邊三角形,DBC邊上的一個動點D不與B,C重合是以AD為邊的等邊三角形,過點FBC的平行線交射線AC于點E,連接BF

如圖1,求證:

請判斷圖1中四邊形BCEF的形狀,并說明理由;

D點在BC邊的延長線上,如圖2,其它條件不變,請問中結(jié)論還成立嗎?如果成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB10AC2,BC邊上的高AD6,則另一邊BC等于_______

【答案】106

【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,

如圖1所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時BC=BD+CD=8+2=10;

如圖2所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時BC=BD-CD=8-2=6,

BC的長為6或10.

型】填空
結(jié)束】
12

【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點A2,0)的兩條直線,分別交軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.

1)求點B的坐標(biāo);

2)若△ABC的面積為4,求的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種子商店銷售“黃金一號”玉米種子,為惠民促銷,推出兩種銷售方案供采購者選擇.

方案一:每千克種子價格為4,均不打折;

方案二:購買3千克以內(nèi)(3千克)的價格為每千克5,若一次購買超過3千克,則超出部分的種子打七折.

(1)請分別求出方案一、方案二中購買的種子數(shù)量x(千克)與付款金額y()之間的函數(shù)關(guān)系式;

(2)若你去購買一定量的種子,你會怎樣選擇方案?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABCD相交于點O,OE是∠BOD的平分線,OFOE,∠BOE=20°.

(1)求∠AOC的度數(shù);

(2)求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解2016年初中畢業(yè)生畢業(yè)后的去向,某縣教育局對部分初三學(xué)生進行了抽樣調(diào)查,就初三學(xué)生的四種去向(A,讀普通高中;B,讀職業(yè)高中; C,直接進入社會就業(yè); D,其它)進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(a)、(b).請根據(jù)圖中信息解答下列問題:
(1)該縣共調(diào)查了多少名初中畢業(yè)生?
(2)通過計算,將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)若該縣2016年初三畢業(yè)生共有4500人,請估計該縣今年的初三畢業(yè)生中準(zhǔn)備讀普通高中的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊答案