如圖,已知D、E分別是的AB、 AC邊上的點(diǎn),. 那么等于    
 : 

試題分析:根據(jù)DE∥BC,可以得到△ADE∽△ABC,通過SADE:S四邊形DBCE=1:8,可以得到△ADE與△ABC的面積的比,根據(jù)相似三角形面積的比等于相似比的平方,即可求解.解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,又∵SADE:S四邊形DBCE=1:8,∴SADE:SABC=1:9,∴AE:AC=1:3.
點(diǎn)評(píng):此類試題屬于難度一般的試題,考生在解答此類試題時(shí)只需對(duì)相似三角形的基本性質(zhì)和判定定理
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形ABCD中,AD=5,AB=3,將矩形ABCD沿某直線折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在線段BC上,再打開得到折痕EF.

(1)當(dāng)A′與B重合時(shí)(如圖1),EF=       ;當(dāng)折痕EF過點(diǎn)D時(shí)(如圖2),求線段EF的長(zhǎng);
(2)①觀察圖3和圖4,設(shè)BA′=x,①當(dāng)x的取值范圍是       時(shí),四邊形AEA′F是菱形;②在①的條件下,利用圖4證明四邊形AEA′F是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果兩個(gè)三角形的相似比為1,那么這兩個(gè)三角形_____     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某村準(zhǔn)備在坡度為i=1:的斜坡上栽樹,要求相鄰兩棵樹之間的水平距離為6米,則這兩棵樹在坡面上的距離AB為           米.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)A1,A2,A3,A4在射線OA上,點(diǎn)B1,B2,B3在射線OB上,且A1B1∥A2B2∥A3B3,A2B1∥A3B2∥A4B3,若△A2B1B2、△A3B2B3的面積分別為2和8,則陰影部分的面積和=         。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列各組中四條線段成比例的是(  )
A.4cm、2cm、1cm、3cmB.1cm、2cm、3cm、4cm
C.25cm、35cm、45cm、55cmD.1cm、2cm、20cm、40cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是BC的中點(diǎn),把一個(gè)三角板的直角頂點(diǎn)放在點(diǎn)D處,將三角板繞點(diǎn)D旋轉(zhuǎn)且使兩條直角邊分別交AB、AC于E、F .

(1)如圖1,觀察旋轉(zhuǎn)過程,猜想線段AF與BE的數(shù)量關(guān)系并證明你的結(jié)論;
(2)如圖2,若連接EF,試探索線段BE、EF、FC之間的數(shù)量關(guān)系,直接寫出你的結(jié)論
(不需證明);
(3)如圖3,若將“AB=AC,點(diǎn)D是BC的中點(diǎn)”改為:“∠B=30°,AD⊥BC于點(diǎn)D”,其余條件不變,探索(1)中結(jié)論是否成立?若不成立,請(qǐng)?zhí)剿麝P(guān)于AF、BE的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC∽△DEF,△ABC的周長(zhǎng)為3,△DEF的周長(zhǎng)為1,則△ABC與△DEF的面積之比為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:中,,中,,. 連接、點(diǎn)、、分別為、、的中點(diǎn).

(1) 如圖1,若、、三點(diǎn)在同一直線上,且,則的形狀是__________,此時(shí)________;
(2) 如圖2,若、、三點(diǎn)在同一直線上,且,證明,并計(jì)算的值(用含的式子表示);
(3) 在圖2中,固定,將繞點(diǎn)旋轉(zhuǎn),直接寫出的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案