【題目】下列說法正確的是(  )

A. 明天降雨的概率是50%”表示明天有半天都在降雨

B. 數(shù)據(jù)4,3,5,5,0的中位數(shù)和眾數(shù)都是5

C. 要了解一批鋼化玻璃的最少允許碎片數(shù),應采用普查的方式

D. 若甲、乙兩組數(shù)中各有20個數(shù)據(jù),平均數(shù)=10,方差s2=1.25,s2=0.96,則說明乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

【答案】D

【解析】

選項A,“明天降雨的概率是50%”表示明天降雨和不降雨的可能性相等,并不表示半天都在降雨,選項A錯誤;選項B,數(shù)據(jù)4,3,5,5,0的中位數(shù)是4,眾數(shù)是5,選項B錯誤;選項C,要了解一批鋼化玻璃的最少允許碎片數(shù),應采用抽樣調(diào)查的方式,選項C錯誤;選項D,因方差s2>s2可得乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定正確,選項D正確.故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級學習小組在探究學習過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖

(1)所示位置放置放置,現(xiàn)將RtAEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.

(1)求證:AM=AN;

(2)當旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=∠GAC.

1)求證ΔADEΔABC

2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面內(nèi)容:我們已經(jīng)學習了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):

a0,b0時:

2=a2+b≥0

a+b≥2,當且僅當a=b時取等號.

請利用上述結(jié)論解決以下問題:

1)請直接寫出答案:當x0時,x+的最小值為   .當x0時,x+的最大值為   ;

2)若y=,(x>﹣1),求y的最小值;

3)如圖,四邊形ABCD的對角線AC、BD相交于點O,AOB、COD的面積分別為49,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點CAB的延長線上,AD平分∠CAE交⊙O于點D,且AECD,垂足為點E,BC3CD3

1)求證:直線CE是⊙O的切線;

2)求⊙O的半徑;

3)求弦AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=BC=2,ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1BAC于點E,A1C1分別交AC、BCD、F兩點.

(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BEBF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;

(2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是( 。

A. 袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球

B. 擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)

C. 先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面

D. 先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖,拋物線的圖象經(jīng)過坐標原點O,且與軸的另一交點為(,0).

(1)求拋物線的解析式;

(2)若直線與拋物線相交于點A和點B(A在第二象限),設點A′是點A關(guān)于原點O的對稱點,連接A′B,試判斷ΔAA′B的形狀,并說明理由;

(3)在問題(2)的基礎(chǔ)上,探究:平面內(nèi)是否存在點P,使得以點A,B,A′,P為頂點的四邊形是菱形?若存在直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在中,,,,是斜邊的中點,以為頂點,作,的兩邊交邊于點、(點不與點重合)

(1)當時,求的長度;

(2)當繞點轉(zhuǎn)動時,設,,求關(guān)于的函數(shù)解析式,并寫出的取值范圍.

(3)聯(lián)結(jié),是否存在點,使△與△相似?若存在,請求出此時的長度;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案