【題目】在平面直角坐標(biāo)系中,拋物線軸交于兩點,點在點的左側(cè),拋物線的頂點為,規(guī)定:拋物線與軸圍成的封閉區(qū)域稱為區(qū)域”(不包含邊界)

(1)如果該拋物線經(jīng)過(1,3),求的值,并指出此時區(qū)域_____個整數(shù)點;(整數(shù)點就是橫縱坐標(biāo)均為整數(shù)的點)

(2)求拋物線的頂點的坐標(biāo)(用含的代數(shù)式表示);

(3)(2)的條件下,如果區(qū)域中僅有4個整數(shù)點時,直接寫出的取值范圍.

【答案】(1)6;(2)頂點的坐標(biāo)為(3)

【解析】

1)將點(1,3)代入拋物線解析式中,即可求出值,再分別計算當(dāng)時,對應(yīng)的函數(shù)值,進而可得在區(qū)域內(nèi)整數(shù)點的坐標(biāo),由此可得結(jié)論;

2)利用配方法將拋物線的解析式變形為頂點式,由此即可得出頂點的坐標(biāo);

3)分兩種情況考慮,依照題意畫出圖形,結(jié)合圖形得出關(guān)于的不等式組,解之即可得出結(jié)論.

解:(1)∵拋物線經(jīng)過(1,3),∴,解得:

當(dāng)時,,,∴點,點

當(dāng)時,,∴(01)、(0,2)兩個整數(shù)點在區(qū)域

當(dāng)時,,∴(1,1)(1,2)兩個整數(shù)點在區(qū)域;

當(dāng)時,,∴(21)、(22)兩個整數(shù)點在區(qū)域

綜上所述:此時區(qū)域6個整數(shù)點.

故答案為:6

2,∴頂點的坐標(biāo)為

3)當(dāng)時,,∴拋物線與軸的交點坐標(biāo)為

當(dāng)時,如圖1所示,此時有,解得:;

當(dāng)時,如圖2所示,此時有,解得:

綜上所述:在(2)的條件下,如果區(qū)域中僅有4個整數(shù)點時,則的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,且與軸交于點;點在反比例函數(shù)的圖象上,以點為圓心,半徑為的作圓軸,軸分別相切于點

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)請連結(jié),并求出的面積;

3)直接寫出當(dāng)時,的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某足球特色學(xué)校在商場購買甲、乙兩種品牌的足球.已知乙種足球比甲種足球每只貴20元,該校分別花費2000元、1400元購買甲、乙兩種足球,這樣購得甲種足球的數(shù)量是購得乙種足球數(shù)量的2倍,求甲、乙兩種足球的單價各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAD邊的中點,BEAC,垂足為點F,連接DF,

(1)求證:CF=2AF;

(2)求tan∠CFD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)完二元一次方程組的應(yīng)用之后,老師寫出了一個方程組如下:,要求把這個方程組賦予實際情境.

小軍說出了一個情境:學(xué)校有兩個課外小組,書法組和美術(shù)組,其中書法組的人數(shù)的二倍比美術(shù)組多5人,書法組平均每人完成了4幅書法作品,美術(shù)組平均每人完成了3幅美術(shù)作品,兩個小組共完成了40幅作品,問書法組和美術(shù)組各有多少人?

小明通過驗證后發(fā)現(xiàn)小軍賦予的情境有問題,請找出問題在哪?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是“已知底邊及底邊上的高線作等腰三角形”的尺規(guī)作圖過程.

已知:線段.求作:等腰,使,邊上的高為.作法:如圖,(1)作線段;(2)作線段的垂直平分線于點;(3)在射線上順次截取線段,連接.所以即為所求作的等腰三角形.

請回答:得到是等腰三角形的依據(jù)是:

_____

_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點的坐標(biāo)為,點的變換點的坐標(biāo)定義如下:

當(dāng)時,點的坐標(biāo)為;當(dāng)時,點的坐標(biāo)為

1)點的變換點的坐標(biāo)是   ;點的變換點為,連接,則   °;

2)已知拋物線軸交于點,(點在點的左側(cè)),頂點為.點在拋物線上,點的變換點為.若點恰好在拋物線的對稱軸上,且四邊形是菱形,求的值;

3)若點是函數(shù)圖象上的一點,點的變換點為,連接,以為直徑作,的半徑為,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中有兩點A(0,1),B(﹣1,0),動點P在反比例函數(shù)y=的圖象上運動,當(dāng)線段PA與線段PB之差的絕對值最大時,點P的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于點Px,y),如果點Qx,y)的縱坐標(biāo)滿足y,那么稱點Q為點P關(guān)聯(lián)點

1)請直接寫出點(3,5)的關(guān)聯(lián)點的坐標(biāo)   ;

2)如果點P在函數(shù)yx2的圖象上,其關(guān)聯(lián)點Q與點P重合,求點P的坐標(biāo);

3)如果點Mm,n)的關(guān)聯(lián)點N在函數(shù)y2x2的圖象上,當(dāng)0≤m≤2時,求線段MN的最大值.

查看答案和解析>>

同步練習(xí)冊答案