【題目】近年來,我國煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中現(xiàn):從零時起,井內(nèi)空氣中CO的濃度達(dá)到4mg/L,此后濃度呈直線型增加,在第7小時達(dá)到最高值46mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降.如下圖,根據(jù)題中相關(guān)信息回答下列問題:
(1)求爆炸前后空氣中CO濃度y與時間x的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量取值范圍;
(2)當(dāng)空氣中的CO濃度達(dá)到34mg/L時,井下3km的礦工接到自動報警信號,這時他們至少要以多少km/h的速度撤離才能在爆炸前逃生?
(3)礦工只有在空氣中的CO濃度降到4mg/L及以下時,才能回到礦井開展生產(chǎn)自救,求礦工至少在爆炸后多少小時才能下井.
【答案】解:(1)因為爆炸前濃度呈直線型增加,
所以可設(shè)y與x的函數(shù)關(guān)系式為y=k1x+b(k1≠0),
由圖象知y=k1x+b過點(diǎn)(0,4)與(7,46),
則,
解得,
則y=6x+4,此時自變量x的取值范圍是0≤x≤7.
(不取x=0不扣分,x=7可放在第二段函數(shù)中)
∵爆炸后濃度成反比例下降,
∴可設(shè)y與x的函數(shù)關(guān)系式為y=(k2≠0).
由圖象知y=過點(diǎn)(7,46),
∴=46,
∴k2=322,
∴y=,此時自變量x的取值范圍是x>7.
(2)當(dāng)y=34時,由y=6x+4得,6x+4=34,x=5.
∴撤離的最長時間為7﹣5=2(小時).
∴撤離的最小速度為3÷2=1.5(km/h).
(3)當(dāng)y=4時,由y=得,x=80.5,
80.5﹣7=73.5(小時).
∴礦工至少在爆炸后73.5小時才能下井.
【解析】(1)根據(jù)圖象可以得到函數(shù)關(guān)系式,y=k1x+b(k1≠0),再由圖象所經(jīng)過點(diǎn)的坐標(biāo)(0,4),(7,46)求出k1與b的值,然后得出函數(shù)式y(tǒng)=6x+4,從而求出自變量x的取值范圍.再由圖象知y=(k2≠0)過點(diǎn)(7,46),求出k2的值,再由函數(shù)式求出自變量x的取值范圍.
(2)結(jié)合以上關(guān)系式,當(dāng)y=34時,由y=6x+4得x=5,從而求出撤離的最長時間,再由v=速度.
(3)由關(guān)系式y(tǒng)=知,y=4時,x=80.5,礦工至少在爆炸后80.5﹣7=73.5(小時)才能下井.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線l經(jīng)過點(diǎn)A,BD⊥直線l,CE⊥直線l,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線l上,且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立;請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是直線l上的兩動點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,求證:DF=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具廠要生產(chǎn)500個芭比娃娃,此生產(chǎn)任務(wù)由甲、乙、丙三臺機(jī)器承擔(dān),甲機(jī)器每小時生產(chǎn)12個,乙、丙兩臺機(jī)器的每小時生產(chǎn)個數(shù)之比為4:5.若甲、乙、丙三臺機(jī)器同時生產(chǎn),剛好在10小時25分鐘完成任務(wù).
(1)求乙、丙兩臺機(jī)器每小時各生產(chǎn)多少個?
(2)由于某種原因,三臺機(jī)器只能按一定次序循環(huán)交替生產(chǎn),且每臺機(jī)器在每個循環(huán)中只能生產(chǎn)1小時,即每個循環(huán)需要3小時.
①若生產(chǎn)次序為甲、乙、丙,則最后一個芭比娃娃由 機(jī)器生產(chǎn)完成,整個生產(chǎn)過程共需 小時;
②若想使完成生產(chǎn)任務(wù)的時間最少,直接寫出三臺機(jī)器的生產(chǎn)次序及完成生產(chǎn)任務(wù)的最少時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年3月30日是全國中小學(xué)生安全教育日,某學(xué)校為加強(qiáng)學(xué)生的安全意識,組織了全校1500名學(xué)生參加安全知識競賽,從中抽取了部分學(xué)生成績(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計.請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問題:
頻率分布表
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
50.5~60.5 | 16 | 0.08 |
60.5~70.5 | 40 | 0.2 |
70.5~80.5 | 50 | 0.25 |
80.5~90.5 | m | 0.35 |
90.5~100.5 | 24 | n |
(1)這次抽取了 名學(xué)生的競賽成績進(jìn)行統(tǒng)計,其中:m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績在70分以下(含70分)的學(xué)生為安全意識不強(qiáng),有待進(jìn)一步加強(qiáng)安全教育,則該校安全意識不強(qiáng)的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動時,問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動時(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】7張如圖1的長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時,按照同樣的放置方式,S始終保持不變,則a,b滿足( )
A.a=bB.a=3bC.a=bD.a=4b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y= 上,點(diǎn)B在雙曲線y= (k≠0)上,AB∥x軸,過點(diǎn)A作AD⊥x軸于D.連接OB,與AD相交于點(diǎn)C,若AC=2CD,則k的值為( )
A.6
B.9
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(m,n)在y=的圖象上,且m(n﹣1)≥0.
(1)求m的取值范圍;
(2)當(dāng)m,n為正整數(shù)時,寫出所有滿足題意的A點(diǎn)坐標(biāo),并從中隨機(jī)抽取一個點(diǎn),求:在直線y=﹣x+6下方的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點(diǎn)是的中點(diǎn),點(diǎn)是上的一點(diǎn)(點(diǎn)不與點(diǎn),重合).過點(diǎn),點(diǎn)作直線的垂線,垂足分別為點(diǎn)和點(diǎn).
圖1. 圖2.
(1)如圖1,求證:;(2)如圖2,連接,,請判斷線段與之間的數(shù)量關(guān)系和位置關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com