【題目】某氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖像如圖所示.當(dāng)氣球內(nèi)的氣壓大于150 kPa時,氣球?qū)⒈ǎ疄榱税踩鹨,氣體的體積應(yīng)不小于________m3.
【答案】0.64
【解析】設(shè)氣球內(nèi)氣體的氣壓P(kPa)和氣體體積V(m3)的反比例函數(shù)為P=,將A點坐標(biāo)代入求出k,再將P=150代入求出V的最小值.
設(shè)氣球內(nèi)氣體的氣壓P(kPa)和氣體體積V(m3)的反比例函數(shù)為P=,
∵點A(0.8,120)為反比例函數(shù)圖象上的點,
∴120=,
k=96.
∴P=.
當(dāng)P=150kPa時,V=0.64m3.
故當(dāng)氣球內(nèi)的氣壓大于150kPa時,氣球?qū)⒈ǎ疄榱税踩鹨,氣體的體積應(yīng)不小于0.64m3.
故答案為:0.64.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(問題情境)
課外興趣小組活動時,老師提出了如下問題:
如圖①,在△ABC中,AD是△ABC的中線,若AB=10,AC=8,求AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD至點E,使DE=AD,連接BE.請根據(jù)小明的方法思考:
Ⅰ.由已知和作圖能得到△ADC≌△EDB,依據(jù)是________.
A.SSS B.SAS C.AAS D.ASA
Ⅱ.由“三角形的三邊關(guān)系”可求得AD的取值范圍是________.
解后反思:題目中出現(xiàn)“中點”、“中線”等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形之中.
(2)(學(xué)會運用)
如圖②,AD是 △ABC的中線,點E在BC的延長線上,CE=AB, ∠BAC=∠BCA, 求證:AE=2AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,高AD和BE所在的直線交于點H,且BH=AC,則∠ABC等于( )
A. 45° B. 120° C. 45°或135° D. 45°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅家的陽臺上放置了一個曬衣架如圖①.圖②是曬衣架的側(cè)面示意圖,立桿AB,CD相交于點O,B,D兩點立于地面.經(jīng)測量:AB=CD=136 cm,OA=OC=51 cm,OE=OF=34 cm,現(xiàn)將曬衣架完全穩(wěn)固張開,扣鏈EF成一條線段,且EF=32 cm.垂掛在衣架上的連衣裙總長度小于________cm時,連衣裙才不會拖落到地面上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)在一次用頻率估計概率的試驗中,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,給出的 統(tǒng)計圖如圖所示,則符合這一結(jié)果的試驗可能是 ( )
A.擲一枚硬幣,出現(xiàn)正面朝上的概率
B.擲一枚硬幣,出現(xiàn)反面朝上的概率
C.擲一枚骰子,出現(xiàn) 點的概率
D.從只有顏色不同的兩個紅球和一個黃球中,隨機取出一個球是黃球的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由太原開往運城的D5303次列車,途中有6個停車站,這次列車的不同票價最多有( )
A. 28種 B. 15種 C. 56種 D. 30種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)是我國的傳統(tǒng)節(jié)日,為了調(diào)查學(xué)生對于各地春節(jié)民俗活動的了解程度,某校機抽取一部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果按“A:非常了解、B:基本了解、C:了解較少、D:不太了解”四類分別進(jìn)行統(tǒng)計,并繪制出下面兩幅不完整的統(tǒng)計圖.請根據(jù)兩幅統(tǒng)計圖的信息,解答下列問題:
(1)此次共調(diào)查了_______個學(xué)生;
(2)扇形統(tǒng)計圖中,A所在的扇形的圓心角度數(shù)為_______;
(3)將上面的條形統(tǒng)計圖補畫完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)MN=AM+BN成立嗎?為什么?
(2)若過點C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,⊙O是△ABC的外接圓, =,點D在邊BC上,AE∥BC,AE=BD.
(1)求證:AD=CE;
(2)如果點G在線段DC上(不與點D重合),且AG=AD,求證:四邊形AGCE是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com