【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4)。

(1)請在圖中作出△A′B′C′;(2)寫出點A′、B′、C′的坐標.

【答案】A′2,3,B′1,0,C′5,1

【解析】試題分析:(1)由點Px1,y1)平移后的對應點為P′x1+6y1+4)可得其平移規(guī)律為:向右平移6個單位,向上平移4個單位;故把△ABC的各頂點向右平移6個單位,再向上平移4個單位,順次連接各頂點即為△A′B′C′;

2)根據(jù)各點所在的象限和距離坐標軸的距離得到平移后相應各點的坐標即可.

解:(1∵△ABC中任意一點Px1,y1)平移后的對應點為P′x1+6y1+4),

平移規(guī)律為:向右平移6個單位,向上平移4個單.

如圖所示:

2A′2,3),B′10),C′51).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為的正方形中,點上從運動,連接于點

)試證明:無論點運動到上何處時,都有

)若點從點運動到點,再繼續(xù)在上運動到點,在整個運動過程中,點以每秒單位長度的速度勻速運動,當恰為等腰三角形,求點運動的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 ,……, ,(n為正整數(shù))

(1)試說明是8的倍數(shù);

(2)若△ABC的三條邊長分別為、為正整數(shù))

①求的取值范圍.

②是否存在這樣的,使得△ABC的周長為一個完全平方數(shù),若存在,試舉出一例,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標軸交于A,B,C三點,其中點A的坐標為(﹣3,0),點B的坐標為(4,0),連接AC,BC.動點P從點A出發(fā),在線段AC上以每秒1個單位長度的速度向點C作勻速運動;同時,動點Q從點O出發(fā),在線段OB上以每秒1個單位長度的速度向點B作勻速運動,當其中一點到達終點時,另一點隨之停止運動,設運動時間為t秒.連接PQ.

(1)填空:b=   c=   ;

(2)在點P,Q運動過程中,APQ可能是直角三角形嗎?請說明理由;

(3)在x軸下方,該二次函數(shù)的圖象上是否存在點M,使PQM是以點P為直角頂點的等腰直角三角形?若存在,請求出運動時間t;若不存在,請說明理由;

(4)如圖,點N的坐標為(﹣,0),線段PQ的中點為H,連接NH,當點Q關(guān)于直線NH的對稱點Q′恰好落在線段BC上時,請直接寫出點Q′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形中,是中心對稱圖形但不是軸對稱圖形的是(

A.等邊三角形B.平行四邊形C.正五邊形D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在校園藝術(shù)節(jié)活動中,參加攝影大賽的作品共有98件,比上屆參賽作品增加了40%,則上屆參賽作品有( 。

A.39B.60C.70D.71

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E點為DF上的點,BAC上的點,∠1=2,CD,那么DFAC,請完成它成立的理由

∵∠1=2 (

2=3 ,1=4(

∴∠3=4(

______________ (

∴∠CABD

∵∠CD

∴∠DABD

DFAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為驗證擲一個質(zhì)地均勻的骰子,向上的點數(shù)為偶數(shù)的概率是0.5”,下列模擬實驗中,不科學的是( )

A. 袋中裝有1個紅球一個綠球,它們除顏色外都相同,計算隨機摸出紅球的概率

B. 用計算器隨機地取不大于10的正整數(shù),計算取得奇數(shù)的概率

C. 隨機擲一枚質(zhì)地均勻的硬幣,計算正面朝上的概率

D. 如圖,將一個可以自由旋轉(zhuǎn)的轉(zhuǎn)盤分成甲、乙、丙3個相同的扇形,轉(zhuǎn)動轉(zhuǎn)盤任其自由停止,計算指針指向甲的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:在ABC中,AB、BCAC三邊的長分別為、,求這個三角形的面積小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點ABC(即ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求ABC的高,而借用網(wǎng)格就能計算出它的面積.

1)請你利用上述方法求出ABC的面積.

2)在圖2中畫DEF,DEEF、DF三邊的長分別為、

①判斷三角形的形狀,說明理由.

②求這個三角形的面積.(直接寫出答案)

查看答案和解析>>

同步練習冊答案