【題目】如圖,在△ABC中,點(diǎn)DBC的中點(diǎn),點(diǎn)E,F分別在線段AD及其延長(zhǎng)線上,且DE=DF.給出下列條件:

①BE⊥EC②BF∥CE;③AB=AC

從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是 (只填寫序號(hào)).

【答案】

【解析】試題分析:首先利用對(duì)角線互相平分的四邊形是平行四邊形判定該四邊形為平行四邊形,然后結(jié)合菱形的判定得到答案即可.

解:由題意得:BD=CDED=FD,

四邊形EBFC是平行四邊形,

①BE⊥EC,根據(jù)這個(gè)條件只能得出四邊形EBFC是矩形,

②BF∥CE,根據(jù)EBFC是平行四邊形已可以得出BF∥CE,因此不能根據(jù)此條件得出菱形,

③AB=AC

,

∴△ADB≌△ADC,

∴∠BAD=∠CAD

∴△AEB≌△AECSAS),

∴BE=CE,

四邊形BECF是菱形.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)y= 的圖象上,過(guò)點(diǎn)A,B作x軸的垂線,垂足分別是M,N,射線AB交x軸于點(diǎn)C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為(

A.2
B.4
C.﹣2
D.﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校20周年校慶時(shí),需要在草場(chǎng)上利用氣球懸掛宣傳條幅,EF為旗桿,氣球從A處起飛,幾分鐘后便飛達(dá)C處,此時(shí),在AF延長(zhǎng)線上的點(diǎn)B處測(cè)得氣球和旗桿EF的頂點(diǎn)E在同一直線上.

(1)已知旗桿高為12米,若在點(diǎn)B處測(cè)得旗桿頂點(diǎn)E的仰角為30°,A處測(cè)得點(diǎn)E的仰角為45°,試求AB的長(zhǎng)(結(jié)果保留根號(hào));
(2)在(1)的條件下,若∠BCA=45°,繩子在空中視為一條線段,試求繩子AC的長(zhǎng)(結(jié)果保留根號(hào))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線相交于點(diǎn)O,過(guò)點(diǎn)D作DE∥AC,且DE= AC,連接CE,OE,連接AE,交OD于點(diǎn)F.若AB=2,∠ABC=60°,則AE的長(zhǎng)為(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在□ABCD的形外分別作等腰直角ABF和等腰直角ADE,FAB=EAD=90°,

連結(jié)AC、EF.在圖中找一個(gè)與FAE全等的三角形,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng)交AD于E,交BA的延長(zhǎng)線于點(diǎn)F.

(1)求證:△APD≌△CPD;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)準(zhǔn)備新建50個(gè)停車位,用以解決小區(qū)停車難的問(wèn)題.已知新建1個(gè)地上停車位和1個(gè)地下停車位共需0.6萬(wàn)元;新建3個(gè)地上停車位和2個(gè)地下停車位共需1.3萬(wàn)元.

(1)該小區(qū)新建1個(gè)地上停車位和1個(gè)地下停車位各需多少萬(wàn)元?

(2)該小區(qū)的物業(yè)部門預(yù)計(jì)投資金額超過(guò)12萬(wàn)元而不超過(guò)13萬(wàn)元,那么共有幾種建造停車位的方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,P,Q分別是BC,AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別為R,S,若AQ=PQ,PR=PS,則這四個(gè)結(jié)論中正確的有( )

①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)如圖,ABC的兩條高AD、BE相交于點(diǎn)H,且AD=BD,試說(shuō)明下列結(jié)論成立的理由。(1)DBH=DAC;(2)BDH≌△ADC.

查看答案和解析>>

同步練習(xí)冊(cè)答案