【題目】如圖,為的直徑,于,在上,連接,,延長與的延長線交于,在上,且.
求證:是的切線;
若,,求的長.
【答案】(1)詳見解析;(2).
【解析】
(1)連結OD,由CO⊥AB得∠E+∠C=90°,根據(jù)等腰三角形的性質(zhì)由FE=FD,OD=OC得到∠E=∠FDE,∠C=∠ODC,于是有∠FDE+∠ODC=90°,則可根據(jù)切線的判定定理得到FD是⊙O的切線;
(2)連結AD,如圖,利用圓周角定理,由AB為⊙O的直徑得到∠ADB=90°,則∠A+∠ABD=90°,加上∠OBD=∠ODB,∠BDF+∠ODB=90°,則∠A=∠BDF,易得△FBD∽△FDA,根據(jù)相似的性質(zhì)得,再在Rt△ABD中,根據(jù)正切的定義得到tan∠A=tan∠BDF==,于是可計算出DF=2,從而得到EF=2.
連結,如圖,
∵,
∴,
∵,,
∴,,
∴,
∴,
∴,
∴是的切線;
連結,如圖,
∵為的直徑,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
而,
∴,
∴,
在中,,
∴,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖在Rt△ABC中,∠C=90°,點D是AC的中點,且∠A+∠CDB=90°,過點A、D作⊙O,使圓心O在AB上,⊙O與AB交于點E.
(1)求證:直線BD與⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,在△ABC中,AB=BC=4,∠ABC=90°,M是AC的中點,點N在AB上(不同于A、B),將△ANM繞點M逆時針旋轉90°得△A1PM.
(1)畫出△A1PM
(2)設AN=x,四邊形NMCP的面積為y,直接寫出y關于x的函數(shù)關系式,并求y的最大或最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線BC與半徑為6的⊙O相切于點B,點M是圓上的動點,過點M作MC⊥BC,垂足為C,MC與⊙O交于點D,AB為⊙O的直徑,連接MA、MB,設MC的長為x,(6<x<12).
(1)當x=9時,求BM的長和△ABM的面積;
(2)是否存在點M,使MDDC=20?若存在,請求出x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=8cm,BC=6cm,P點在BC上,從B點到C點運動(不包括 C點),點 P運動的速度為1cm/s;Q點在AC上從C點運動到A點(不包括A點),速度為2cm/s,若點 P、Q 分別從B、C 同時運動,且運動時間記為t秒,請解答下面的問題,并寫出探索的主要過程.
(1)當 t 為何值時,P、Q 兩點的距離為 4cm?
(2)請用配方法說明,點P運動多少時間時,四邊形BPQA的面積最小?最小面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB∶S四邊形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個被平均分成等份的轉盤,每一個扇形中都標有相應的數(shù)字,甲乙兩人分別轉動轉盤,設甲轉動轉盤后指針所指區(qū)域內(nèi)的數(shù)字為,乙轉動轉盤后指針所指區(qū)域內(nèi)的數(shù)字為(當指針在邊界上時,重轉一次,直到指向一個區(qū)域為止).
直接寫出甲轉動轉盤后所指區(qū)域內(nèi)的數(shù)字為負數(shù)的概率;
用樹狀圖或列表法,求出點落在第二象限內(nèi)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一張透明的平行四邊形膠片沿對角線剪開,得到圖①中的兩張三角形膠片和.將這兩張三角形膠片的頂點B與頂點E重合,把繞點B順時針方向旋轉,這時AC與DF相交于點O.
(1)當旋轉至如圖②位置,點B(E),C,D在同一直線上時,∠AFD與∠DCA的數(shù)量關系是 .
(2)當繼續(xù)旋轉至如圖③位置時,(1)中的結論還成立嗎?請說明理由.
(3)在圖③中,連接BO,AD,探索BO與AD之間有怎樣的位置關系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com