【題目】(1)方法回顧:在學(xué)習(xí)三角形中位線時(shí),為了探索三角形中位線的性質(zhì),思路如下:

第一步添加輔助線:如圖1,在中,延長(zhǎng)分別是的中點(diǎn))到點(diǎn),使得,連接;

第二步證明,再證四邊形是平行四邊形,從而得出三角形中位線的性質(zhì)結(jié)論:____________________________________(請(qǐng)用DE與BC表示)


(2)問(wèn)題解決:如圖2,在正方形ABCD中,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=2,DF=3,∠GEF=90°,求GF的長(zhǎng).

(3)拓展研究:如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=,DF=2,∠GEF=90°,求GF的長(zhǎng).

【答案】DEBC,DE=BC.

【解析】分析:(1)直接得出結(jié)論即可;

2)延長(zhǎng)GE、FD交于點(diǎn)H可證得△AEG≌△DEH,結(jié)合條件可證明EF垂直平分GH,可得GF=FH可求得GF的長(zhǎng);

3)過(guò)點(diǎn)DAB的平行線交GE的延長(zhǎng)線于點(diǎn)H,過(guò)HCD的垂線,垂足為P,連接HF,可證明△AEG≌△DEH,結(jié)合條件可得到△HPD為等腰直角三角形,可求得PF的長(zhǎng).在RtHFP,可求得HF,則可求得GF的長(zhǎng).

詳解1DEBC,DE=BC

2)如圖2,延長(zhǎng)GE、FD交于點(diǎn)H,

EAD中點(diǎn),

EA=ED,且∠A=EDH=90°,

AEGDEH中,

∵∠A=EDH,EA=ED,∠AEG=HED,

AEGDEHASA),

AG=HD=2EG=EH

∵∠GEF=90°,

EF垂直平分GH

GF=HF=DH+DF=2+3=5;

3)如圖3,過(guò)點(diǎn)DAB的平行線交GE的延長(zhǎng)線于點(diǎn)H,過(guò)HCD的垂線,垂足為P,連接HF,

同(1)可知AEGDEHGF=HF,

∴∠A=HDE=105°AG=HD=3

∵∠ADC=120°,

∴∠HDF=360°105°120°=135°,

∴∠HDP=45°,

PDH為等腰直角三角形,

PD=PH=1

DF2

PF=PD+DF=1+2=3,

GF=HF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為豐富學(xué)生的學(xué)習(xí)生活,某校九年級(jí)組織學(xué)生參加春游活動(dòng),所聯(lián)系的旅行收費(fèi)標(biāo)準(zhǔn)如下:
春游活動(dòng)結(jié)束后,該班共支付給該旅行社活動(dòng)費(fèi)用2800元,請(qǐng)問(wèn)該班共有多少人參加這次春游活動(dòng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD為正方形,已知點(diǎn)A(﹣6,0),D(﹣7,3),點(diǎn)B、C在第二象限內(nèi).

(1)求點(diǎn)B的坐標(biāo)。

(2)將正方形ABCD以每秒1個(gè)單位的速度沿x軸向右平移t秒,若存在某一時(shí)刻t,使在第一象限內(nèi)點(diǎn)B、D兩點(diǎn)的對(duì)應(yīng)點(diǎn)B′、D′正好落在某反比例函數(shù)的圖象上,請(qǐng)求出此時(shí)t的值以及這個(gè)反比例函數(shù)的解析式;

(3)在(2)的情況下,問(wèn)是否存在x軸上的點(diǎn)P和反比例函數(shù)圖象上的點(diǎn)Q,使得以P、Q、B′、D′四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出符合題意的點(diǎn)P、Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某日的錢(qián)塘江觀潮信息如表:


按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離 (千米)與時(shí)間 (分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時(shí)甲地‘交叉潮’的潮頭離乙地12千米”記為點(diǎn) ,點(diǎn) 坐標(biāo)為 ,曲線 可用二次函數(shù) , 是常數(shù))刻畫(huà).
(1)求 的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時(shí),小紅騎單車(chē)從乙地出發(fā),沿江邊公路以 千米/分的速度往甲地方向去看潮,問(wèn)她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車(chē)頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過(guò)乙地后均勻加速,而單車(chē)最高速度為 千米/分,小紅逐漸落后,問(wèn)小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度 , 是加速前的速度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】順次連接對(duì)角線相等的四邊形的四邊中點(diǎn),所得的四邊形一定是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度, 的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將平移,使點(diǎn)A變換為點(diǎn)A′,點(diǎn)B′,C′,分別是B,C的對(duì)應(yīng)點(diǎn).

(1)請(qǐng)畫(huà)出平移后的,并求的面積;

(2)試說(shuō)明△A'B'C'是如何由ABC平移得到的;

(3)若連接AA′,CC′,則這兩條線段之間的關(guān)系是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某糧庫(kù)已存有糧食100噸,本周內(nèi)糧庫(kù)進(jìn)出糧食的紀(jì)錄如下(運(yùn)進(jìn)記為正,運(yùn)出記為負(fù)):

(1)通過(guò)計(jì)算,說(shuō)明本周內(nèi)哪天糧庫(kù)剩下的糧食最多?

(2)若運(yùn)進(jìn)的糧食為購(gòu)進(jìn)的,購(gòu)買(mǎi)的價(jià)格為每噸2000元,運(yùn)出的糧食為賣(mài)出的,賣(mài)出的價(jià)格為每噸2300元,則這周的利潤(rùn)為多少?

(3)若每周平均進(jìn)出的糧食大致相同,則再過(guò)幾周糧庫(kù)存的糧食可達(dá)到200噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)自然數(shù)的立方,可以分裂成若干個(gè)連續(xù)奇數(shù)的和。例如:分別可以按如圖所示的方式分裂2個(gè)、3個(gè)和4個(gè)連續(xù)奇數(shù)的和,即=3+5;=7+9+11; =13+15+17+19;…;若也按照此規(guī)律來(lái)進(jìn)行分裂,則分裂出的奇數(shù)中,最大的奇數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB=30°,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),得到△A1BC1

(1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長(zhǎng)線時(shí),求∠CC1A1的度數(shù);
(2)已知AB=6,BC=8,
①如圖2,連接AA1 , CC1 , 若△CBC1的面積為16,求△ABA1的面積;
②如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)的過(guò)程中,點(diǎn)P的對(duì)應(yīng)是點(diǎn)P1 , 直接寫(xiě)出線段EP1長(zhǎng)度的最大值.
(3)線段EP1長(zhǎng)度的最大值為11,理由如下:

查看答案和解析>>

同步練習(xí)冊(cè)答案