以下是甲、乙、丙三人看地圖時對四個坐標的描述:
甲:從學校向北直走500米,再向東直走100米可到圖書館.
乙:從學校向西直走300米,再向北直走200米可到郵局.
丙:郵局在火車站西200米處.
根據三人的描述,若從圖書館出發(fā),判斷下列哪一種走法,其終點是火車站( 。
A.向南直走300米,再向西直走200米 |
B.向南直走300米,再向西直走100米 |
C.向南直走700米,再向西直走200米 |
D.向南直走700米,再向西直走600米 |
科目:初中數學 來源: 題型:解答題
如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平行四邊形ABCD中,AD>AB.
(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴ ∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.本試卷錫
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:單選題
對一個圖形進行放縮時,下列說法中正確的是( )
A.圖形中線段的長度與角的大小都會改變; |
B.圖形中線段的長度與角的大小都保持不變; |
C.圖形中線段的長度保持不變、角的大小可以改變; |
D.圖形中線段的長度可以改變、角的大小保持不變. |
查看答案和解析>>
科目:初中數學 來源: 題型:計算題
如圖,△ABD ≌△EBD, △DBE ≌△DCE, B, E, C在一條直線上.
【小題1】BD是∠ABE的平分線嗎?為什么
【小題2】DE⊥BC,BE=EC嗎?為什么
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com