【題目】如圖是某種品牌的籃球架實物圖與示意圖,已知底座BC=0.6米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.5米,籃板頂端F點到籃框D的距離FD=1.4米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離.(精確到0.1米.參考數(shù)據(jù):cos75°≈0.3,sin75°≈0.9,.tan75°≈3.7,≈1.7,≈1.4)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中有一邊長為1的正方形OABC,邊OA,OC分別在x軸,y軸上,如果以對角線OB為邊作第二個正方形OBB1C1,再以對角線OB1為邊作第三個正方形OB1B2C2,照此規(guī)律作下去,則點B2019的坐標為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點C,則OC=( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與直線y=x交于(1,1)和(3,3)兩點,現(xiàn)有以下結(jié)論:①b2﹣4c>0;②3b+c+6=0;③當(dāng)x2+bx+c>時,x>2;④當(dāng)1<x<3時,x2+(b﹣1)x+c<0,其中正確的序號是( )
A. ①②④B. ②③④C. ②④D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末沿同一條路線登山,甲、乙兩人距地面的高度y(米)與登山時間x(分鐘)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題
(1)甲登山的速度是每分鐘 米;乙在A地提速時,甲距地面的高度為 米;
(2)若乙提速后,乙的速度是甲登山速度的3倍;
①求乙登山全過程中,登山時距地面的高度y(米)與登山時間x(分鐘)之間的函數(shù)解析式;
②乙計劃在他提速后5分鐘內(nèi)追上甲,請判斷乙的計劃能實現(xiàn)嗎?并說明理由;
(3)當(dāng)x為多少時,甲、乙兩人距地面的高度差為80米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角△ABC中,BC>AB>AC,求作一點P,使得∠BPC與∠A互補,甲、乙兩人作法分別如下:
甲:以B為圓心,AB長為半徑畫弧交AC于P點,則P即為所求.
乙:作BC的垂直平分線和∠BAC的平分線,兩線交于P點,則P即為所求.
對于甲、乙兩人的作法,下列敘述正確的是( )
A. 兩人皆正確B. 甲正確,乙錯誤C. 甲錯誤,乙正確D. 兩人皆錯誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面內(nèi)有一點P到△ABC的三個頂點的距離分別為PA、PB、PC,若有PA2=PB2+PC2則稱點P為△ABC關(guān)于點A的勾股點.
(1)如圖2,在4×5的網(wǎng)格中,每個小正方形的長均為1,點A、B、C、D、E、F、G均在小正方形的頂點上,則點D是△ABC關(guān)于點 的勾股點;在點E、F、G三點中只有點 是△ABC關(guān)于點A的勾股點.
(2)如圖3,E是矩形ABCD內(nèi)一點,且點C是△ABE關(guān)于點A的勾股點,
①求證:CE=CD;②若DA=DE,∠AEC=120°,求∠ADE的度數(shù).
(3)矩形ABCD中,AB=5,BC=6,E是矩形ABCD內(nèi)一點,且點C是△ABE關(guān)于點A的勾股點,
①若△ADE是等腰三角形,求AE的長;②直接寫出AE+BE的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.
(1)求證:DE是⊙O的切線;
(2)若AE:EB=1:2,BC=12,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,旗桿AB的頂端B在夕陽的余輝下落在一個斜坡上的點D處,某校數(shù)學(xué)課外興趣小組的同學(xué)正在測量旗桿的高度,在旗桿的底部A處測得點D的仰角為15°,AC=10米,又測得∠BDA=45°.已知斜坡CD的坡度為i=1:,求旗桿AB的高度(,結(jié)果精確到個位).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com