【題目】某學校為了提高學生學科能力,決定開設以下校本課程:A.文學院;B.小小數(shù)學家;C.小小外交家;D、未來科學家.為了了解學生最喜歡哪一項校本課程,學校隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

1)這次統(tǒng)計共抽查了   名學生;在扇形統(tǒng)計圖中,表示C類別的扇形圓心角度數(shù)為   

2)補全條形統(tǒng)計圖;

3)一班想從表達能力很強的甲、乙、丙、丁四名同學中,任選2名參加小小外交家小組,請用列表或畫樹狀圖的方法求恰好同時選中甲、乙兩名同學的概率.

【答案】(1)200;108°;(2)詳見解析;(3)

【解析】

1)直接利用對應人數(shù)除以對應百分率得到總數(shù),再求出C類人數(shù)的百分比,圓心角度數(shù)為360°乘以百分比即可 2)直接補充圖即可 3)畫出樹狀圖,利用概率公式進行計算即可

解:(120÷200,

所以這次統(tǒng)計共抽查了200名學生;

C類人數(shù)為20020804060(人),

在扇形統(tǒng)計圖中,表示C類別的扇形圓心角度數(shù)為360°×108°

故答案為200;108°;

2)如圖,

3)畫樹狀圖為:

共有12種等可能的結果數(shù),其中恰好同時選中甲、乙兩名同學的結果數(shù)為2

所以恰好同時選中甲、乙兩名同學的概率=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,∠B90°,AD2,AB4,BC6,點O是邊BC上一點,以O為圓心,OC為半徑的O,與邊AD只有一個公共點,則OC的取值范圍是( 。

A. 4OCB. 4OCC. 4OCD. 4OC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:點Pa,b)關于原點的對稱點為P,以PP為邊作等邊PPC,則稱點CP等邊對稱點;

1)若P1,3),求點P等邊對稱點的坐標.

2)平面內有一點P1,2),若它其中的一個等邊對稱點C在第四象限時,請求此C點的坐標;

3)若P點是雙曲線yx0)上一動點,當點P等邊對稱點C在第四象限時,

①如圖(1),請問點C是否也會在某一函數(shù)圖象上運動?如果是,請求出此函數(shù)的解析式;如果不是,請說明理由.

②如圖(2),已知點A 1,2),B 2,1),點G是線段AB上的動點,點Fy軸上,若以A、G、F、C這四個點為頂點的四邊形是平行四邊形時,求點C的縱坐標yc的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點CAB的延長線上,AD平分∠CAE⊙O于點D,且AE⊥CD,垂足為點E

1)求證:直線CE⊙O的切線.

2)若BC=3,CD=3,求弦AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)2號樓對外銷售,已知2號樓某單元共33層,一樓為商鋪,只租不售,二樓以上價格如下:第16層售價為6000/2,從第16層起每上升一層,每平方米的售價提高30元,反之每下降一層,每平方米的售價降低10元,已知該單元每套的面積均為1002

1)請在下表中,補充完整售價y(元/2)與樓層xx取正整數(shù))之間的函數(shù)關系式.

樓層x(層)

1

2≤x≤15

16

17≤x≤33

售價y(元/2

不售

   

6000

   

2)某客戶想購買該單元第26層的一套樓房,若他一次性付清購房款,可以參加如圖優(yōu)惠活動.請你幫助他分析哪種優(yōu)惠方案更合算.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+4x軸交于點A(﹣10)、B30),與y軸交于點C

1)求拋物線的解析式;

2)如圖1D為拋物線對稱軸上一動點,求D運動到什么位置時DAC的周長最;

3)如圖2,點E在第一象限拋物線上,AEBC交于點F,若AFFE21,求E點坐標;

4)點MN同時從B點出發(fā),分別沿BA、BC方向運動,它們的運動速度都是1個單位/秒,當點M運動到點A時,點N停止運動,則當點N停止運動后,在x軸上是否存在點P,使得PBN是等腰三角形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一科技小組進行了機器人行走性能試驗.在試驗場地有A、BC三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),經過7min同時到達C點,乙機器人始終以60m/min的速度行走,如圖是甲、乙兩機器人之間的距離ym)與他們的行走時間xmin)之間的函數(shù)圖象,請結合圖象,回答下列問題:

1A、B兩點之間的距離是   m,甲機器人前2min的速度為   m/min;

2)若前3min甲機器人的速度不變,求線段EF所在直線的函數(shù)解析式;

3)直接寫出兩機器人出發(fā)多長時間相距28m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+4x+c過點A(6,0)、B(3,),與y軸交于點C.聯(lián)結AB并延長,交y軸于點D

(1)求該拋物線的表達式;

(2)求△ADC的面積;

(3)P在線段AC上,如果△OAP和△DCA相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的材料:

如果函數(shù)滿足:對于自變量的取值范圍內的任意,

1)若,都有,則稱是增函數(shù);

2)若,都有,則稱是減函數(shù).

例題:證明函數(shù)是減函數(shù).

證明:設,

,

.即

∴函數(shù)是減函數(shù).

根據(jù)以上材料,解答下面的問題:

已知函數(shù),

1)計算:   ,   ;

2)猜想:函數(shù)   函數(shù)(填);

3)請仿照例題證明你的猜想.

查看答案和解析>>

同步練習冊答案