【題目】小明、小亮、小芳和兩個陌生人甲、乙同在如圖所示的地下車庫等電梯,已知兩個陌生人到1至4層的任意一層出電梯,并設(shè)甲在a層出電梯,乙在b層出電梯.
(1)請你用畫樹狀圖或列表法求出甲、乙二人在同一層樓出電梯的概率;
(2)小亮和小芳打賭說:“若甲、乙在同一層或相鄰樓層出電梯,則小亮勝,否則小芳勝”.該游戲是否公平?說明理由.
【答案】
(1)解:列表如下:
甲 乙 | 1 | 2 | 3 | 4 |
1 | (1,1) | (2,1) | (3,1) | (4,1) |
2 | (1,2) | (2,2) | (3,2) | (4,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) |
一共出現(xiàn)16種等可能結(jié)果,其中出現(xiàn)在同一層樓梯的有4種結(jié)果,
則P(甲、乙在同一層樓梯)=
(2)解:由(1)列知:甲、乙住在同層或相鄰樓層的有10種結(jié)果
故P(小亮勝)=P(同層或相鄰樓層)= ,P(小芳勝)=1﹣ ,
∵ > ,∴游戲不公平
【解析】(1)列表得出所有等可能的情況數(shù),找出甲乙在同一個樓層的情況數(shù),即可求出所求的概率;(2)分別求出兩人獲勝的概率比較得到公平與否,修改規(guī)則即可.
【考點精析】利用列表法與樹狀圖法對題目進行判斷即可得到答案,需要熟知當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BD是對角線,AE⊥BD于點E,CF⊥BD于點F,試判斷四邊形AECF是不是平行四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).
小明的解題思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=50°+60°=110°.
問題遷移:
(1)如圖3,AD∥BC,點P在射線OM上運動,當(dāng)點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請說明理由;
(2)在(1)的條件下,如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx的圖像如圖,若一元二次方程ax2+bx+m=0有實數(shù)根,則m的最大值為( )
A.﹣3
B.3
C.﹣6
D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,每個小正方形的邊長為1個單位,每個小正方形的頂點叫格點.
(1)將△ABC向左平移8格,再向下平移1格.請在圖中畫出平移后的△A′B′C′
(2)利用網(wǎng)格在圖中畫出△ABC的中線CD,高線AE;
(3)△A′B′C′的面積為_____.
(4)在平移過程中線段BC所掃過的面積為 .
(5)在右圖中能使的格點P的個數(shù)有 個(點P異于A).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小明和弟弟從家出發(fā),步行去吉林省圖書館學(xué)習(xí).出發(fā)2分鐘后,小明發(fā)現(xiàn)弟弟的數(shù)學(xué)書忘記帶了,弟弟繼續(xù)按原速前往圖書館,小明按原路原速返回家取書,然后騎自行前往圖書館,恰好與弟弟同時到達圖書館.小明和弟弟各自距家的路程y(m)與小明步行的時間x(min)之間的函數(shù)圖象如圖所示.
(1)求a的值.
(2)求小明取回書后y與x的函數(shù)關(guān)系式.
(3)直接寫出小明取回書后與弟弟相距100m的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)時,發(fā)現(xiàn)直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式是能用乘法公式計算.
即:原式=(2-1) (2+1)(22+1)(24+1)(28+1)(216+1)=232-1.
請用上述方法算出(5+1) (52+1)(54+1)(58+1)(516+1) (532+1)的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G.
(1)求證:AD垂直平分EF;
(2)若∠BAC=60°,猜測DG與AG間有何數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點B.
(1)求該拋物線的函數(shù)表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設(shè)點M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時,動點M相應(yīng)的位置記為點M′.
①寫出點M′的坐標(biāo);
②將直線l繞點A按順時針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點C,設(shè)點B、M′到直線l′的距離分別為d1、d2 , 當(dāng)d1+d2最大時,求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com