【題目】如圖,在ABCD中,連接對角線BD,BE平分∠ABD交AD于點(diǎn)E,DF平分∠BDC交BC于點(diǎn)F.
(1)求證:△AEB≌△CFD;
(2)若BD=BA,試判斷四邊形DEBF的形狀,并加以證明.
【答案】(1)證明見解析;(2)四邊形DEBF是矩形;理由見解析.
【解析】分析:(1)由平行四邊形的性質(zhì)得出AD∥BC,CD∥BA,∠A=∠C,AB=CD,得出∠ABD=∠BDC,由角平分線的定義證出∠DBE=∠FDB,由ASA證明△AEB≌△CFD即可;(2)先證明四邊形DEBF是平行四邊形,再根據(jù)等腰三角形的“三線合一”的性質(zhì)推知BE⊥AD,然后由“有一內(nèi)角為直角的平行四邊形是矩形”證得四邊形DEBF是矩形即可.
本題解析:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,CD∥BA,∠A=∠C,AB=CD,
∴∠ABD=∠BDC(兩直線平行,內(nèi)錯角相等).
又∵BE平分∠ABD,DF平分∠BDC,
∴∠ABE=∠DBE=∠ABD,∠CDF=∠BDF=∠BDC,
∴∠DBE=∠FDB=∠DBE=∠BDF(等量代換),
在△AEB和△CFD中, ,
∴△AEB≌△CFD(ASA);
(2)解:四邊形DEBF是矩形;理由如下:
由(1)知:∠DBE=∠BDF,
∴BE∥DF,
∵DE∥BF,
∴四邊形EBFD是平行四邊形.
∵BD=BA,BE是∠ABD的平分線,
∴BE⊥AD,
∴∠DEB=90°,
∴四邊形DEBF是矩形(有一內(nèi)角為直角的平行四邊形是矩形).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,二次函數(shù)的圖像過點(diǎn) A (3,0),B (0,4)兩點(diǎn),動點(diǎn) P 從 A 出發(fā),在線段 AB 上沿 A → B 的方向以每秒 2 個單位長度的速度運(yùn)動,過點(diǎn)P作 PD⊥y 于點(diǎn) D ,交拋物線于點(diǎn) C .設(shè)運(yùn)動時間為 t (秒).
(1)求二次函數(shù)的表達(dá)式;
(2)連接 BC ,當(dāng)t=時,求△BCP的面積;
(3)如圖 2,動點(diǎn) P 從 A 出發(fā)時,動點(diǎn) Q 同時從 O 出發(fā),在線段 OA 上沿 O→A 的方向以 1個單位長度的速度運(yùn)動,當(dāng)點(diǎn) P 與 B 重合時,P 、 Q 兩點(diǎn)同時停止運(yùn)動,連接 DQ 、 PQ ,將△DPQ沿直線 PC 折疊到 △DPE .在運(yùn)動過程中,設(shè) △DPE 和 △OAB重合部分的面積為 S ,直接寫出 S 與 t 的函數(shù)關(guān)系式及 t 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,濱海廣場裝有風(fēng)能、太陽能發(fā)電的風(fēng)光互補(bǔ)環(huán)保路燈,燈桿頂端裝有風(fēng)力發(fā)電機(jī),中間裝有太陽能板,下端裝有路燈.該系統(tǒng)工作過程中某一時刻的截面圖如圖2,已知太陽能板的支架BC垂直于燈桿OF,路燈頂端E距離地面6米,DE=1.8米,∠CDE=60°.且根據(jù)我市的地理位置設(shè)定太陽能板AB的傾斜角為43°.AB=1.5米,CD=1米,為保證長為1米的風(fēng)力發(fā)電機(jī)葉片無障礙安全旋轉(zhuǎn),對葉片與太陽能板頂端A的最近距離不得少于0.5米,求燈桿OF至少要多高?(利用科學(xué)計(jì)算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,結(jié)果保留兩位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:●和○兩種圓按某種規(guī)則排列,則前2017個圓中有○ 個.( 。
○●○●●○●●●○●○●●○●●●○●○●●○●●●……
A. 671 B. 672 C. 673 D. 674
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 直徑是弦 B. 最長的弦是直徑
C. 垂直于弦的直徑平分弦 D. 經(jīng)過三點(diǎn)可以確定一個圓
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,BC=6cm,CD=3cm,將△BCD沿BD翻折,點(diǎn)C落在點(diǎn)C′處,BC′交AD于點(diǎn)E,則AE的長為______ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列因式分解中,是利用提公因式法分解的是( 。
A. a2﹣b2=(a+b)(a﹣b) B. a2﹣2ab+b2=(a﹣b)2
C. ab+ac=a(b+c) D. a2+2ab+b2=(a+b)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com