【題目】如圖①,已知⊙O的半徑為1,PQ是⊙O的直徑,n個相同的正三角形沿PQ排成一列,所有正三角形都關于PQ對稱,其中第一個△A1B1C1的頂點A1與點P重合,第二個△A2B2C2的頂點A2是B1C1與PQ的交點……最后一個△AnBnCn的頂點Bn,Cn在圓上.
(1)如圖②,當n=1時,求正三角形的邊長a1.
(2)如圖③,當n=2時,求正三角形的邊長a2.
(3)如圖①,求正三角形的邊長an(用含n的代數式表示).
【答案】(1) a1=.(2) a2=’ (3) an=.
【解析】分析:(1)設PQ與 交于點D,連接,得出OD= -O,用含的代數式表示OD,在△OD中,根據勾股定理求出正三角形的邊長;(2)設PQ與 交于點E,連接O,得出OE=E-O,用含的代數式表示OE,在△OE中,根據勾股定理求出正三角形的邊長;(3)設PQ與 交于點F,連接O,得出OF=F-O,用含an的代數式表示OF,在△OF中,根據勾股定理求出正三角形的邊長an.
本題解析:
(1)易知△A1B1C1的高為,則邊長為,
∴a1=.
(2)設△A1B1C1的高為h,則A2O=1-h,連結B2O,設B2C2與PQ交于點F,則有OF=2h-1.
∵B2O2=OF2+B2F2,∴1=(2h-1)2+ .
∵h=a2,∴1=(a2-1)2+a22,
解得a2= .
(3)同(2),連結BnO,設BnCn與PQ交于點F,則有BnO2=OF2+BnF2,
即1=(nh-1)2+ .
∵h= an,∴1=an2+ ,
解得an= .
科目:初中數學 來源: 題型:
【題目】如圖,長方形AOBC在直角坐標系中,點A在y軸上,點B在x軸上,已知點C的坐標是(8,4).
(1)求對角線AB所在直線的函數關系式;
(2)對角線AB的垂直平分線MN交x軸于點M,連接AM,求線段AM的長;
(3)若點P是直線AB上的一個動點,當△PAM的面積與長方形OABC的面積相等時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD中,點E、F在BD上,且BF=DE.
(1)寫出圖中所有你認為全等的三角形;
(2)連接AF、CE,四邊形AFCE是平行四邊形嗎?請證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD中,AB=4,BC=5,∠ABC=60°,對角線AC,BD交于點O,過點O作OE⊥AD,則OE等于( )
A.
B.2
C.2
D.2.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸正半軸交于點A(3,0),與y軸交于點B(0,3),點P是x軸上一動點,過點P作x軸的垂線交拋物線于點C,交直線AB于點D,設P(x,0).
(1)求拋物線的函數表達式;
(2)當0<x<3時,求線段CD的最大值;
(3)在△PDB和△CDB中,當其中一個三角形的面積是另一個三角形面積的2倍時,求相應x的值;
(4)過點B,C,P的外接圓恰好經過點A時,x的值為 .(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com