【題目】依據(jù)國家實行的《國家學生體質(zhì)健康標準》,對懷柔區(qū)初一學生身高進行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學生現(xiàn)存的身高問題,分析其影響因素,為學生的健康發(fā)展及學校體育教育改革提出合理項建議.已知懷柔區(qū)初一學生有男生840人,女生800人,他們的身高在 范圍內(nèi),隨機抽取初一學生進行抽樣調(diào)查。抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表;
根據(jù)統(tǒng)計圖表提供的信息,下列說法中
①抽取男生的樣本中,身高 之間的學生有18人;
②初一學生中女生的身高的中位數(shù)在組;
③抽取的樣本中抽取女生的樣本容量是38;
④初一學生身高在 之間的學生約有800人。其中合理的是( )
A. ①②B. ①④C. ②④D. ③④
【答案】B
【解析】
根據(jù)頻數(shù)分布直方圖和中位數(shù)的定義可判斷①、②;由男生總?cè)藬?shù)及男生比女生多2人可判斷③;用男女生身高的樣本中160cm至170cm所占比例乘以男女生總?cè)藬?shù)可判斷④.
解:由直方圖可知,抽取男生的樣本中,身高在155≤x<165之間的學生有8+10=18人,故①正確;
由A與B的百分比之和為10.5%+37.5%=48%<50%,則女生身高的中位數(shù)在C組,故②錯誤;
∵男生身高的樣本容量為4+8+10+12+8=42,
∴女生身高的樣本容量為40,故③錯誤;
∵女生身高在160cm至170cm(不含170cm)的學生有40×(30%+15%)=18人,
∴身高在160cm至170cm(不含170cm)的學生有(840+800)×=800(人),故④正確;
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】不透明的口袋里裝有白、黃、藍三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個,黃球有1個,現(xiàn)從中任意摸出一個是白球的概率為.
(1)試求袋中藍球的個數(shù);
(2)第一次任意摸一個球(不放回),第二次再摸一個球,請用畫樹狀圖或列表格法,求兩次摸到都是白球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】ABCD的兩條對角線AC,BD交于點O,點E是CD的中點,△DOE的面積為l0cm2,則△ABD的面積為( )
A.15cm2B.20cm2C.30cm2D.40cm2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前節(jié)能燈在城市已基本普及,為面向鄉(xiāng)鎮(zhèn)市場,蘇寧電器分店決定用76000元購進室內(nèi)用、室外用節(jié)能燈,已知這兩種類型的節(jié)能燈進價、售價如下:
價格 類型 | 進價(元/盞) | 售價(元/盞) |
室內(nèi)用節(jié)能燈 | 40 | 58 |
室外用節(jié)能燈 | 50 | 70 |
(1)若該分店共購進節(jié)能燈1700盞,問購進的室內(nèi)用、室外用節(jié)能燈各多少盞?
(2)若該分店將進貨全部售完后獲利要不少于32000元,問至少需要購進多少盞室內(nèi)用節(jié)能燈?
(3)掛職鍛煉的大學生村官王祥自酬了4650元在該分店購買這兩種類型的節(jié)能燈若干盞,分發(fā)給村民使用,其中室內(nèi)用節(jié)能燈盞數(shù)不少于室內(nèi)用節(jié)能燈盞數(shù)的2倍,問王祥最多購買室外用節(jié)能燈多少盞?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程
(1)求證:不論k取什么實數(shù)值,這個方程總有實數(shù)根;
(2)若等腰三角形ABC的一邊長為,另兩邊的長b、c恰好是這個方程的兩個根,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,∠ACD=3∠BCD,E是斜邊AB的中點,則∠ECD的度數(shù)為__________度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在三角形中,點在線段上,交于點,點在直線上,作直線,過點作直線交直線于點.
圖1 圖2 圖3
(1)在如圖1所示的情況下,求證:;
(2)若三角形不變,,兩點的位置也不變,點在直線上運動.
①當點在三角形內(nèi)部時,說明與的數(shù)量關(guān)系:
②當點在三角形外部時,①中結(jié)論是否依然成立?若不成立,與又有怎樣的數(shù)量關(guān)系?請在圖2中畫圖探究,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D,AD交⊙O于點E.
(1) 求證:AC平分∠DAB;
(2) 連接BE交AC于點F,若cos∠CAD=,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com