【題目】四邊形ABCD中,∠DAB=60°,AB=AD,線段BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到線段BE,連接AC、ED.
(1)求證:AC=DE;
(2)若DC=4,BC=6,∠DCB=30°,求AC的長(zhǎng).
【答案】(1)證明見解析(2)2
【解析】試題分析:(1)連接BD,根據(jù)等邊三角形的性質(zhì)以及旋轉(zhuǎn)的性質(zhì),即可得到△ABC≌DBE,,進(jìn)而得出AC=DE;
(2)連接CE,根據(jù)CB=EB,∠CBE=60°,可得△BCE是等邊三角形,從而∠BCE=60°,又因∠DCB=30°,,可得∠DCE=90°,再根據(jù)DC=4,BC=6=CE,運(yùn)用勾股定理即可得到DE的長(zhǎng),進(jìn)而得出AC的長(zhǎng).
證明:(1)如圖,連接BD,
∵∠DAB=60°,AB=AD,
∴△ABD是等邊三角形,
∴AB=DB,∠ABD=60°,
∵線段BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到線段BE,
∴CB=EB,∠CBE=60°,
∴∠ABC=∠DBE,
在△ABC和△DBE中,
,
∴△ABC≌△DBE(SAS),
∴AC=DE;
(2)如圖,連接CE,
由CB=EB,∠CBE=60°,可得△BCE是等邊三角形,
∴∠BCE=60°,
又∵∠DCB=30°,
∴∠DCE=90°,
∵DC=4,BC=6=CE,
∴Rt△DCE中,DE==2,
∴AC=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校以隨機(jī)抽樣的方式開展了“中學(xué)生喜歡數(shù)學(xué)的程度”的問卷調(diào)查,調(diào)查的結(jié)果分為A(不喜歡)、B(一般)、C(比較喜歡)、D(非常喜歡)四個(gè)等級(jí),圖1、圖2是根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問題:
(1)C等級(jí)所占的圓心角為________°;
(2)請(qǐng)直接在圖2中補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有學(xué)生1000人,請(qǐng)根據(jù)調(diào)查結(jié)果,估計(jì)“比較喜歡”的學(xué)生人數(shù)為多少人.
某!爸袑W(xué)生喜歡數(shù)學(xué)的程度”的扇形統(tǒng)計(jì)圖 某校“中學(xué)生喜歡數(shù)學(xué)的程度”的條形統(tǒng)計(jì)圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對(duì)全校1200名學(xué)生進(jìn)行“校園安全知識(shí)”的教育活動(dòng),從1200名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行測(cè)試,成績(jī)?cè)u(píng)定按從高分到低分排列分為, , , 四個(gè)等級(jí),繪制了圖①、圖②兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中所給信息解答下列問題:
(1)求本次被抽查的學(xué)生共有多少名?
(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中“”所在的扇形圓心角的度數(shù);
(4)估計(jì)全校“”等級(jí)的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別標(biāo)有數(shù)字1,2,4的小球,它們的形狀、大小、質(zhì)地等完全相同,小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
(1)寫出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)小明、小華各取一次,由取出小球所確定的數(shù)字作為點(diǎn)的坐標(biāo),這樣的點(diǎn)(x,y)中落在反比例函數(shù)y=的圖象上的點(diǎn)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y=y(tǒng)1+y2,y1與x成正比例,y2與x-2成正比例,當(dāng)x=1時(shí),y=0;當(dāng)x=-3時(shí),y=4.
(1)求y與x的函數(shù)關(guān)系式,并說明此函數(shù)是什么函數(shù);
(2)當(dāng)x=3時(shí),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1在正方形ABCD的外側(cè)作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.
(圖1) (圖2) (備用圖)
(1)請(qǐng)判斷:AF與BE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;
(2)如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請(qǐng)直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只甲蟲在5×5的方格(每小格邊長(zhǎng)為1)上沿著網(wǎng)格線運(yùn)動(dòng),它從A處出發(fā)去看望B、C、D處的其它甲蟲,規(guī)定:向上向右走為正,向下向左走為負(fù).例如從A到B記為:A →B(+1,+3),從B到A記為:B→A(﹣1,-3),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
(1)圖中A →C(______,______),B →C(______,______),C→_______(+1,﹣2);
(2)若這只甲蟲的行走路線為A→B→C→D,請(qǐng)計(jì)算該甲蟲走過的路程;
(3)從A處去P處的行走路線依次為(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),請(qǐng)?jiān)趫D中標(biāo)出P的位置;
(4)若圖中另有兩個(gè)格點(diǎn)M、N,且M→A(3-a,b-4),M→N(5-a,b-2),則N→A應(yīng)記為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)決定在學(xué)生中開展丟沙包、打籃球、跳大繩和踢毽球四種項(xiàng)目的活動(dòng),為了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)調(diào)查了該校m名學(xué)生最喜歡的一種項(xiàng)目(每名學(xué)生必選且只能選擇四種活動(dòng)項(xiàng)目的一種),并將調(diào)查結(jié)果繪制成如下的不完整的統(tǒng)計(jì)圖表:
學(xué)生最喜歡的活動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)表
項(xiàng)目 | 學(xué)生數(shù)(名) | 百分比 |
丟沙包 | 20 | 10% |
打籃球 | 60 | p% |
跳大繩 | n | 40% |
踢毽球 | 40 | 20% |
根據(jù)圖表中提供的信息,解答下列問題:
(1)m= ,n= ,p= ;
(2)請(qǐng)根據(jù)以上信息直接補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該校2000名學(xué)生中有多少名學(xué)生最喜歡跳大繩.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方方同學(xué)在寒假社會(huì)調(diào)查實(shí)踐活動(dòng)中,對(duì)某罐頭加工廠進(jìn)行采訪,獲得了該廠去年的部分生產(chǎn)信息如下:
①該廠一月份罐頭加工量為a噸;
②該廠三月份的加工量比一月份增長(zhǎng)了44%;
③該廠第一季度共加工罐頭182噸;
④該廠二月、三月加工量每月按相同的百分率增長(zhǎng);
⑤該廠從四月份開始設(shè)備整修更新,加工量每月按相同的百分率開始下降;
⑥六月份設(shè)備整修更新完畢,此月加工量為一月份的2.1倍,與五月份相比增長(zhǎng)了46.68噸.
利用以上信息求:
(1)該廠第一季度加工量的月平均增長(zhǎng)率;
(2)該廠一月份的加工量a的值;
(3)該廠第二季度的總加工量.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com